

Job-Centric Security Model for Open Collaborative Environment

Yuri Demchenko
Universiteit van Amsterdam

demch@science.uva.nl
Leon Gommans

Universiteit van Amsterdam
lgommans@science.uva.nl

Cees de Laat
Universiteit van Amsterdam

delaat@science.uva.nl
Bas Oudenaarde

Universiteit van Amsterdam
oudenaarde@science.uva.nl

Andrew Tokmakoff
Telematica Instituut

Andrew.Tokmakoff@telin.nl
Martin Snijders

Telematica Instituut
Martin.Snijders@telin.nl

ABSTRACT

This paper describes the design and development of a
flexible, customer driven, security infrastructure for Open
Collaborative Environments. The experiences were
gained within the framework of the Collaboratory.nl
project. The work is based on extended use of emerging
Web Services and Grid security technologies, combined
with concepts from the generic Authentication
Authorization and Accounting (AAA) authorisation
framework. Basic CNL use cases and functional security
requirements are analysed to provide motivation for the
proposed Job-centric security model. This model
describes access control and user- and resource
management. The proposed Job-centric approach uses a
Job description as a semantic document that is created on
the basis of the signed order (or business agreement). It
contains all the information required to run the
experiment and also to create/manage the virtual Job-
based associations of users and resources. The proposed
trust relations analysis explains the use of trust anchors
in the Job-centric security model. In addition, the paper
provides implementation details of using XACML and
SAML for Authorisation assertions and messaging, based
on the current CNL implementation.

KEYWORDS: Open Collaborative Environment, Job-
centric security model, authorisation framework, RBAC,
SAML, XACML

1. INTRODUCTION

Many modern research areas (e.g. the process

industry) rely on advanced laboratory equipment, such as
electron microscopes, mass spectrometers, equipment for
surface analysis , and other analytical equipment.
Effective use of this equipment during experiments and

for production work requires complex infrastructure and
the involvement of many specialists that may be
distributed and span multiple organisations. Emerging
Computer Grids and Web Services technologies provide a
sound basis for extending Groupware, which has
traditionally been used for collaborative applications to
build a virtual collaborative environment. Such virtual
laboratories offer the same possibilities as a traditional
laboratory, however they also enable laboratory staff to
utilise the equipment and expertise of third parties.
Security services provide a reliable and secure operational
environment that is capable of managing customers’ and
providers’ resources. Protection of privacy and
confidentiality is of particular importance when different
parties share the same equipment.

This paper presents the experience of designing and

developing an open, flexible, customer-driven security
infrastructure for open collaborative applications in the
framework of the Collaboratory.nl1 project (CNL). The
work is largely based upon extended use of emerging
Web Services and Computer Grid security technologies
and the generic AAA authorisation framework [1, 2, 3, 4].

Collaborative applications require a sophisticated,

multi-dimensional security infrastructure that manages
secure operation of user applications between multiple
administrative- and trust domains. Typical Open
Collaborative Environment (OCE) use cases requires that
the collaborative environment:

• is dynamic since the environment can potentially

change from one experiment to another,
• may span multiple trust domains,
• can handle different user identities and

attributes/privileges that must comply with different
policies (both experiment and task specific).

1 http://www.collaboratory.nl/

Managing access based upon role-assigned privileges
and policy enforcement are addressed in many
collaborative and Computer Grids projects. The majority
of known solutions and implementations [5, 6] use widely
recognised Role-based Access Control (RBAC) [7]
models as a general conceptual approach, and XACML
[8] as an implementation basis. The current Grid Security
Infrastructure and Authorisation framework evolved from
using proprietary solutions such as the Community
Authorisation Service (CAS), toward the use of a
XACML-based Policy Management and Authorization
Service, as seen in for the most recent Globus Toolkit 4.0
release [5, 6, 9, 10]. Although providing a good example
of addressing similar tasks, current Grid based solutions
don’t provide all of the required functionality for the
OCE. Their deep embedding into parallel task scheduling
mechanisms prevents distributed execution of dissimilar
computational tasks/jobs. The OCE is less coupled and
mostly concerned with the allocation and execution of
complex experiments on the equipment that for most use
cases require human control and interaction during
experiment.

Collaborative tools like Chef2, initially designed for

online educational course management, can provide most
of the necessary functionality for the creation of a
collaborative environment. However, this environment
needs to be extended such that it can be integrated with
other stages and components of the collaborative
organisation managing the experiment stages. These
stages include the initial stage of order creation and the
main experimental stage that requires secure access to the
instrument or resource.

To address these specifics, the OCE security

architecture proposes a novel Job-centric approach, which
is uses the Job description as a semantic document,
created on the basis of a signed order (or business
agreement) [11, 12]. The document contains all the
information required to run the analysis, including the Job
ID, assigned users and roles, and a trust/security anchor(s)
in the form of the resource and additionally the
customer’s digital signature. In general, such approach
allows binding security services and policies to a
particular job and/or resource.

This paper is organized as follows: Section 2 presents

basic OCE use cases, the required security functionality
and also introduces the proposed Job-centric security
model. Section 3 describes the operation of the OCE
security system which is built around the Job description
as a semantic document defining security context for
OCE security services operations. Section 4 provides

2 http://www.chefproject.org/

more details about policy-based access control in the
OCE, and discusses issues associated with combining
multiple policies and multi-level access control
enforcement. In addition, implementation suggestions are
provided based upon CNL practical experience. Section 5
attempts to formalise the trust relations evident in an open
distributed access control system, using the Job-centric
security model and RBAC.

Finally, section 6 provides additional implementation

details, describing the CNL Authorisation service which
combines RBAC functionality with the generic AAA
Authorisation framework. The CNL Authorisation service
provides a good example of using XACML and SAML
standards for Authorisation assertions and messaging.

The proposed approach and solutions are being

developed to respond to both common and specific
requirements of the CNL and EGEE3 projects. The
approach and can also represent a typical OCE use case
for the general Web Services and OGSA Security
framework. It is expected that other project may stand to
benefit from this work, as it proposes a general approach
and common solutions for the security problems found in
OCEs.

2. GENERAL OCE SECURITY

REQUIREMENTS AND PROPOSED
JOB-CENTRIC SECURITY MODEL

Security services are defined as the component of the

OCE middleware that provides a secure infrastructure and
environment for executing OCE tasks/jobs. Generally
speaking, security services can be added to an already
existing operational architecture, however current
industry demand for very secure operational
environments requires that the Security architecture is
developed as an integral part of the system design. There
should be also the possibility to define a security services
profile at the moment of a system service invocation
defined by a security policy.

For the purpose of analysing the required security

functionality, the OCE use cases can be divided into two
groups; simple security interactions and extended
interactions. In a simple interaction use case, the major
task is to securely provide remote access to instrument(s)
that belong to a single provider. For this case, the remote
site or the resource owner can provide few onsite services
and allow distributed user groups. An extended use case
must additionally allow distributed multi-site services,
multiple user identities and attribute providers, and
distributed job execution. In its own turn, multiple trust

3 http://public.eu-egee.org/

domains will require dynamic creation of user and
resource federations/associations, handling different
policies, specific measures for protecting data
confidentiality and user/subject privacy in a potentially
uncontrolled environment.

In both cases there is a need for the following

functionality:

• fine-grained access control based upon user/subject
attributes/roles and policies defined by a resource.

• privilege/attribute management by a designated person
holding responsibility for a particular experiment or
job.

• customer-managed/controlled security environment
with the root of trust defined by a user/subject (or their
private key). The security environment should also
allow secure isolation of the execution of customer
tasks on OCE facilities protected by the customer-
controlled security key/credentials.

The above-listed requirements may be successfully

addressed within the proposed job-centric approach to
security services provisioning. Procedures in the OCE
include two major stages as part of accepting and
executing the order: negotiation and signing of the order
(business part), plus performing the experiment (technical
part). The Job description, as a semantic document, is
created based upon the signed order and contains all
information required to perform the experiment on the
OCE infrastructure. The job description includes a Job
ID, Job owner, assigned users and roles, and trust/security
anchor(s) in the form of both resource and customer
digital signatures. This kind of Job Description can be
used as a foundation for creating a Virtual Organisation
(VO) instance, as an association of designated users and
resources which supports all “standard” security
constructs such as users, groups, roles, trust domains,
designated services and authorities [2, 13]. Figure 1
illustrates the structure of a Job Description and also its
relation to other OCE components and security services.

The Job Description must include (or reference) the

Job policy, which defines all aspects of the user, resource
and trust management that should be take into account
when executing the job. This policy should define the
following items:

• trusted users, VO’s, resources and in general, trusted

credentials (or trusted Certification Authorities);
• delegation policy and identity federation/mapping

policy (additionally);
• privileges/permissions assigned to roles;
• credit limits and conditions of use;

• confidentiality and privacy requirements;
• Job access control or authorisation policy.

Signed
Order

Document

(BA/TA1)

* JobID
* Job Attributes
* Job Priority
* Job Owner

* User List
* User Attributes
* RBAC Admin

Job Description

* Policy Ref/Attach
* TrustAnchor (TA2)

Job Manager
(Scheduler)

Access Control
System

* UserDB
* Policy
* AuthN/Z context

Figure 1. OCE Security built around a Job
description

It is important to note that a Job policy may be

combined with the Resource admission policy and in
practice should not be more restrictive than the Resource
policy. Otherwise, the Job security management service
may reject some resources based upon Resource policy
evaluation as a procedure of mutual authorisation.

Such a job-centric approach gives organizations

complete flexibility in the creation of their security
associations and services for their specific tasks or
applications.

3. OCE SECURITY SYSTEM OPERATION

Each OCE has a need for basic security services:

authentication (AuthN) and single-sign-on (SSO), policy
based authorisation (AuthZ), information and data
confidentiality and integrity, non-repudiation and privacy.
Security services may be bound to and requested from
any basic OCE service using a standard request/response
format. Use of security services must be specified by the
policy that provides a mapping between a request context
(e.g., action requested by a particular subject on a
particular resource) and resource functionality and access
permissions. A binding between (basic) services and
security services can be defined dynamically at the
moment of service deployment or invocation using
existing Web services and XML Security technologies for
associating/attaching security services and policies to the
service description [14, 15, 16].

Figure 2 illustrates the relations and interactions
between major entities and processes in our Job-centric
security model, including the actors/principals of the
customer site and the services/(semantic)
documents/entities of the resource site. For the purpose of
trust analysis in section 5, the modules are grouped by
shared trust relations in relation to the resource that is
considered to be the root of trust for the model.

The initial information required for proper operation

of the AuthN/AuthZ system should be provided in a job
description (JobDescr) that binds job attributes, user
information and established security/trust relations
between the customer and the provider. This approach to
building security services in the OCE, defined as a job-
centric, provides the perceived benefit of decoupling

security services from the application specific
components, thereby simplifying the construction of the
scalable distributed security infrastructure.

The JobDescr artefact is created as the result of

customer and provider negotiation and an agreement that
can provide the so-called business and/or trust anchor
(BA/TA). During operation, security services will:

1) retrieve user information and roles from the

JobDescr and put them into the UserDB;
2) retrieve job attributes to reference or define the

policy of the resource access;
3) use TA or BA to verify or sign all future security

(or financial) related attributes, claims, tokens and
credentials.

Users

Site Services/Resources

Resource/
Service

TR1

Resource
Broker

Attributes

User
CT AuthzReq

AuthnTkt

Job/
RBAC
AdmT

Order/
CRM

Customer
Site/Org

PI/Job
Admin
TA2

Biz/Admn
TA1 Order

(document)
TR8/TA1

AA
TR3

PEP
TR2

AuthN/
SSO
TR7

RAM
TR1

SrvDeliv

SrvReq AuthnTkt

AuthzTkt

Policy

AuthzTkt

JobDescr

OrderDoc

OrderDoc

JobDescr

Job
(template)

Job
(instance)
TR3/TA2

Policy
(template)

Policy
(instance)

TR4

PDP
TR5 UserDB

TR6

UserList

AuthN/ SSO

AA

User
DB

Resource IF
TR1

PEP/PDP

Resource Agent

Figure 2. Major interacting components and entities in the Job-centric security model

Interaction with the user is provided via the User

Collaborative Tools (UserCT) and their interaction with
the instrument, via the Resource Agent. User
authentication is requested by UserCT, user authorisation
is enforced by the Resource Agent. The UserCT and
Authentication services (AuthN) may provide a SSO
(Single-Sign-On) functionality to provide a single user

logon for a particular domain, defined by a business or
trust agreement.

The Principal Investigator (PI) or Job/order owner

may possess the RBAC administrative functions
(privileges) that allow him/her to create and/or modify
user accounts and assign roles/privileges for a particular
job/experiment via the Job/RBAC Administration tools.

To allow user access to the resource, the Resource
Agent requests (via the Policy Enforcement Point (PEP))
an authorisation decision from the Policy Decision Point
(PDP). It is the PDP that evaluates the authorisation
request against the policy defined for a particular job,
resource and user attributes/roles. The access policy is
defined by the resource owner and stored in the policy
repository. During policy evaluation, the PDP may
request specific user attributes from the Attribute
Authority (AA) and, additionally, user identity
confirmation from the AuthN service.

The resource interacts with the OCE via the Resource

Allocation and Manager (RAM) and via the Resource
interface (Resource IF) which may contain an internal
PEP/PDP that controls the resource access, based upon
the internal resource’s usage policy and conditions.

4. POLICY BASED ACCESS CONTROL

USING GENERIC AAA FRAMEWORK

A typical access control use-case may require

combination of multiple policies and multi-level access
control enforcement which may take place when

combining newly-developed and legacy access control
systems into one integrated access control solution.
Figure 3 illustrates a typical RBAC authorisation model
that implements the combined pull-push model of the
generic AAA Authorisation framework in the interest of
performance optimisation.

The diagram also explains how combining of multiple
policies can be achieved, via PEP chaining/sequencing
and/or PDP nesting/recursion. The proposed approach
retains the integrity of the single/combined policy based
decision. Thus, when the PDP evaluates a request from
the PEP, it can call for external evaluation of some policy
components but makes its own final decision, returning it
to the calling PEP which acts as a gateway for the initial
request.

The Requestor requests a service by sending a service
request ServReq to the Resource’s PEP providing as
much or as little information about the Subject/Requestor,
Resource, Action, and additionally Environment as it
decides necessary according to the applicable
authorisation model and (should be known) local policies.

Requestor

AuthN
and

IdentMngt

Site Services/Resources

Resource/
Service

PDP PDP PDP
(Master)

Attribute
Authority

PAP

PEP1 PEP2

PDP
(Secondary)

chain

PAP
(local)

PAP

PDP
(Secondary)

chain

PDP
(local)

User
login

IF

Srv Req

Srv Deliv AzTicket

AzTicket

Ext
AuthZ

IF

AzReq

An
Req/
Resp

AzTicket

PDP
types
call

Attr Req/Valid

AuthN Req/Valid

AuthN Req

Extern
PDP
chain

AzTicket

Az
Tickt

Decision

Figure 3. Major components of the site Authorisation service (RBAC and combined pull-push model)

In a simple scenario, the PEP sends the decision
request to the (designated) PDP and after receiving a PDP
decision, relays a service request to the Resource. The
PDP identifies the applicable policy instance and retrieves
it from the Policy Authority Point (PAP), collects the
required context information and evaluates the request
against the policy. During this process, it may need to
validate the presented credentials locally, based upon pre-
established/shared trust relations, or call external
Authentication and Attribute Authorities.

In an open heterogeneous environment, the PEP may

receive requests that use different formats and semantics
(namespaces) and refer to different policies and/or policy
repositories. In this case, the PEP should have the
possibility to relay a decision request to the proper PDP
type which is able to handle the decision request. It is
essential that a request is evaluated in total and a decision
is made by a single PDP, which however can make
subsequent calls to external PDP’s to evaluate some
request components and process their decisions as
components of the general policy evaluation process. The
PDP that makes a final combined decision can be referred
to as the master PDP and it needs to have mechanisms in
place to preserve the integrity of its final combined
decision.

Existing (open) policy expression formats such as

XACML [8] and AAA [17], provide mechanisms for a
particular policy instance to refer to another policy
instance. A complex/combined policy can be created by a
PAP on PDP policy request, or processed by the PDP by
requesting the required policy components during the
request evaluation.

As a trade-off of being open through the use of

separate access control components and open standards,
the solution presented above has known performance
concerns, namely that requesting a remote PDP decision
involves the use of time and resource hungry components
such as building a remote SSL/TLS connection, XML
message parsing, possible remote policy request and
PDP/AuthZ service invocation. In total, this may cause a
delay ranging from 40 to 800 milliseconds. This trade-off
can be resolved by combining the pull and push operation
models. Since the decision is made by the PDP, the
authorisation ticket AuthzTicket can be issued and used in
the subsequent similar or repeat action requests during the
ticket’s validity period. The AuthzTicket can be obtained
via the PEP during the first access request or request
directly from the PDP via an external AuthZ interface
prior to sending service request.

The scenario described above is a basic one, but it

requires that both the Requestor and the Resource

services know (either explicitly or implicitly) and share
the following security context: access control policy,
namespace(s) and semantics, established trust relations, -
which should be established prior to the security services
initiation. Consequently, the following implementation
suggestions should be considered:

1. Every PEP in the chain of policy enforcement should

take care of the whole request evaluation/enforcement
by calling to a single (master) PDP. The PEP should
not do the combination of multiple decisions. Only
one PDP should provide a final decision on the whole
request. However, the PEP may have the possibility to
request different PDP types, based upon the request
semantics/namespace and referred policy.

2. It is suggested that in general (and to have the
possibility of combining the pull and push AuthZ
models for the performance reasons), the PEP should
understand and have a possibility to validate the
AuthzTicket issued by the trusted PDP or AuthZ
service. For this purpose the Requestor may request,
the PDP may issue and the PEP may relay the
AuthzTicket back to the Requestor. The AuthzTicket
issued by the PDP should have an associated validity
period, usage restriction and should also contain
information about the decision and the resource. For
further validation of the AuthzTicket, the PEP may
cache the ticket locally to further speed-up the
validation procedure.

WS-Policy and WS-PolicyAttachment provide

mechanisms to dynamically link security services to the
OCE basic services [15, 16]. This can be done by
associating/attaching the policy definition or reference to
the service description in the WSDL format in the
following way:

• the central point of the policy attachment is the service

description in a form of a WSDL file, which contains
a definition of the portTypes, available services and
messages format. Attaching a policy to WSDL means
that the policy reference can be added to any of the
WSDL elements.

• interacting services will fetch policy document and
apply restrictions/rules to elements, which declared
policy compliance requirements; this may apply to
both service request and response or service delivery.

In this case, security services may be added

dynamically to a requested (basic) service instance at the
time of its invocation.

5. TRUST RELATIONS IN DISTRIBUTED
AAA INFRASTRUCTURE

This section provides a high-level analysis of trust

relations for the general Job-centric security model
discussed in section 3 (see also Figure 2). The analysis is
intended to provide recommendations for the required
trust and policy authority relations, including relations
between Resource, Policy and PDP trust domains and
authorities, and requirements on key/credential
distribution for the OCE security architecture.

For the purpose of analysis, Figure 2 combines the

main components of the OCE access control
infrastructure into groups that have the same level of trust
and/or authority in respect to the decision-making process
and its context. It is assumed that in the resource access
control model, the root of trust belongs to the resource.

The OCE/CNL Job-centric model uses one or two

trust anchors (TA’s) shared between the Customer and the
Resource sites:

• TA1 – is contained in the signed Order created at

the business negotiation stage and is optional.
• TA2 – included in the JobDescription that is

created by the PI or Job owner and contains all
the necessary context information for configuring
the OCE security services instances. TA2 is a
mandatory element of the discussed model.

For convenience, all components of the resource site

are assigned credentials, their trust paths to the root of
trust (defined by the Resource) are marked as TRn, where
n is an integer. Using credentials path semantics proposed
in [18], the following trust/credentials chain and
delegation are considered between major
modules/objects, where a credential is identified by the
issuer or semantic document as a prefix and an
attribute/role as a suffix.

User => HomeOrg.staff

=> Job.members (TA2)
=> Member.roles

=> Role.permissions

The expression above can be read as follows: The user
will have a final permission (to do an action), if s/he has a
credential from the HomeOrg with attribute “staff”, s/he
is contained in the “members” list of the Job description,
s/he is assigned a role in the members attribute list (may
be a part of the Job Description or AA repository), and
finally the user’s designated role is assigned a
“permission” to do an action. The final mapping between
the roles and permissions is provided by the policy.

It is suggested that if a chain of delegation/credentials
spans different trust domains, the trust anchor should be
placed in the joint point. TA2 in our example is bound to
the semantic document Job Description that can be easily
shared between the Resource and the customer.

Using the above semantics, the process of obtaining

the required permissions to perform the requested action
by the user can be described in the following form:

User
=> AuthN(HomeOrg.staff, Job.members)
=> AuthZ(Member.roles, Policy.permissions)
=> Resource.permissions

The above analysis is a very initial attempt to tackle
the problem of formalising trust relations in distributed
access control systems. More research will be needed to
propose a more structured approach and solution. With
further analysis it should be possible to provide
recommendations for key management and policy
management in the proposed Job-centric security
infrastructure.

To become a shared trust anchor between the resource

and the customer domains, the Order (TA1) or Job
Description (TA2) must contain mutually signed
credentials/certificates. Although the main PEP operation
will assume a pull authorisation decision request to the
trusted PDP, in general it may accept the AuthzTicket
from an external PDP belonging to the trusted domain.

6. USING SAML AND XACML FOR

AUTHORISATION ASSERTIONS AND
MESSAGING

The proposed Job-centric security model is being

implemented in the CNL Authorisation service. CNL uses
a proprietary Job Description format, which in the future
can be mapped to two related formats: WS-Agreement
[19] and Job Submission Description Language (JSDL)
[20] being developed within the OGSA Framework. The
CNL Authorisation service uses the standard XACML
messaging format for PEP-PDP communications and the
XACML policy format for policy exchange and
combination. SAML [21, 22] is used as a security
assertions format and in particular for the CNL
Authorisation ticket (CNLAuthzTicket).

The Request message consists of three mandatory

elements Subject, Resource, Action (the so-called Target
triad), and optionally may contain the Environment
element. The Subject element consists of the SubjectID,
SubjectConfData, Role and JobID sub-elements. The
Resource element contains a ResourceID sub-element that

specifies the CNL resource or instrument, and may
contain multiple ResourceAttribute sub-elements that may
define a resource subsystem or content-related attribute.
The Action element contains only one sub-element which
is ActionID. It will be also possible to request multiple
actions, however handling of such requests should be
defined by the policy. The Environment element provides
additional context information for the Request and can be
used for the Requestor’s policy reference, in case of
mutual Authorisation.

The AAA Response message format may contain

multiple Result elements, as defined by the request
message and resource policy. The Result element contains
a Decision element, which may contain either “Permit”,
“Deny” or “Intermediate”. The Status element may
contain a simple status code (e.g., “OK”, “request-info”,
etc.) and additional status information in the
StatusMessage and StatusDetail sub-elements.

The CNLAuthzTicket is generated as the result of a

positive PDP decision. It contains the decision and all
necessary information to identify the requested service.
When presented to the PEP, its validity can be verified
and in the case of a positive result, access will be granted
without requesting a new PDP decision.

The following describes the current CNLAuthzTicket

format and its mapping to the SAML Authorisation
Assertion format (due to space limitations , readers are
referred to the SAML 1.0 and SAML 2.0 specifications
for element names semantics [21, 22]):

• SubjectID and SubjectConfData are placed into

SAML Subject/(NameID or BaseID) element and
SubjectConfirmation/ConfirmationData element
respectively.

• Subject attributes such as JobID and roles are placed
into SAMLAuthzDecisionStatement/Evidence element
in the form of a SAML Attribute Assertion.

• ValitidyTime containing two attributes “NotBefore”
and “NotOneOrAfter” is mapped directly into the
related attributes of the SAMLAssertion/Conditions
element.

• Other CNLAuthzTicket validity parameters:
CommunityRestriction and NumberOfUse – can be
placed into related SAML elements or into multiple
Conditions/Condition elements.

Another option is to use the XACML profile of SAML

2.0 which allows the inclusion of original XACML
Request and Response messages directly into the SAML
Authorisation Decision Assertions and Queries [23]. It is
our intention to implement this by extending the

OpenSAML software libraries to accommodate the new
SAML 2.0 specification.

7. CONCLUSION AND SUMMARY

The general OCE Security architecture and proposed

solutions described in this paper are based on the practical
experience we have gained whilst designing and
developing an open collaborative environment within the
Collaboratory.nl project. This paper presents findings that
resulted from building a flexible, customer-driven
security infrastructure for open collaborative applications,
based on both the extended use of emerging Web Services
and Computer Grid security technologies, and further
application specific development of the generic AAA
authorisation framework.

The CNL Security Architecture implements the

proposed Job-centric approach that allows building basic
CNL security services around the semantic Job
Description document. The Job Description is created on
the basis of signed order- and contains all the information
required to run the experiment or execute the job. The
Architecture enables security services such as user
authentication, policy and role based access control,
confidentiality and integrity of information and data.

The CNL Authorisation framework combines Web

Services security mechanisms with the flexibility of the
Generic AAA Architecture and XACML policy/role
based access control model to build fine-grained access
control. Separating policy definition from the
authorisation enforcement simplifies access control
management, which can be delegated to the resource
owner. To reduce performance overhead when requesting
authorisation decision from PDP, CNL implementation
combines pull and push models by using authorisation
ticket with the limited validity period that allows
bypassing of the potentially slow request evaluation of the
PDP.

The CNL project is being developed in coordination

with the EGEE project; this will allow future use of the
Grid infrastructure being developed in the framework of
EGEE project and guarantee the compatibility of basic
security services such as authentication, authorisation,
and corresponding formats of metadata, policies,
messages, etc.

The authors believe that the proposed OCE Security

architecture and related technical solutions is relevant for
other projects that deal with the development of
middleware for virtual laboratories and collaborative
applications, especially those which are concerned with
secure management of resources in such an OCE.

ACKNOWLEDGEMENT

This paper results from development work conducted

within the Collaboratory.nl project, a research initiative
that explores the possibilities of remote control and use of
advanced lab facilities in a distributed and collaborative
industrial research setting. The Collaboratory.nl
consortium consists of DSM, Philips, Corus, FEI,
Telematica Instituut and the University of Amsterdam.

REFERENCES

[1] “Web Services Architecture”. W3C Working Draft 8

August 2003. - http://www.w3.org/TR/ws-arch/

[2] “The Open Grid Services Architecture, Version 1.0. 12
July 2004”. -
http://www.gridforum.org/Meetings/GGF12/Documents/dr
aft-ggf-ogsa-specv1.pdf

[3] RFC 2903 , Experimental, "Generic AAA Architecture",.
de Laat, G. Gross, L. Gommans, J. Vollbrecht, D. Spence,
August 2000 - ftp://ftp.isi.edu/in-notes/rfc2903.txt

[4] RFC 2904 , Informational, "AAA Authorization
Framework" J. Vollbrecht, P. Calhoun, S. Farrell, L.
Gommans, G. Gross, B. de Bruijn, C. de Laat, M.
Holdrege, D. Spence, August 2000 - ftp://ftp.isi.edu/in-
notes/rfc2904.txt

[5] The PRIMA system – Security Mechanisms for
Computational Grids. - http://zuni.cs.vt.edu/grid-
security/index.html

[6] EGEE Site Access Control Architecture. – DJRA3.2 -
https://edms.cern.ch/file/523948/0.20/DJRA3.2-0.20.pdf

[7] Role Based Access Control (RBAC) – NIST, April 2003. -
http://csrc.nist.gov/rbac/

[8] eXtensible Access Control Markup Language (XACML)
Version 2.0 - Committee Draft 04, 6 December 2004 -
http://docs.oasis-open.org/xacml/access_control-xacml-
2_0-core-spec-cd-04.pdf

[9] GFD.38 Conceptual Grid Authorization Framework and
Classification. M. Lorch, B. Cowles, R. Baker, L.
Gommans, P. Madsen, A. McNab, L. Ramakrishnan, K.
Sankar, D. Skow, M. Thompson -
http://www.ggf.org/documents/GWD-I-E/GFD-I.038.pdf

[10] GT 3.9.4 Authorization Framework. - http://www-
unix.globus.org/toolkit/docs/development/3.9.4/security/au
thzframe/

[11] Security Architecture for Open Collaborative
Environment, by Yuri Demchenko, Leon Gommans, Cees
de Laat, Bas Oudenaarde, Andrew Tokmakoff, Martin
Snijders, Rene van Buuren. - European Grid Conference,
EGC 2005, Amsterdam, The Netherlands, February 14-16,
2005, Proceedings. Series: Lecture Notes in Computer
Science.

[12] Collaboration and security in CNL's virtual laboratory, by
Andrew Tokmakoff, Yuri Demchenko and Martin
Snijders. WACE 2004, 23 September 2004. -http://www-
unix.mcs.anl.gov/fl/flevents/wace/wace2004/talks/tokmak
off.pdf

[13] Demchenko Yu. Virtual Organisations in Computer Grids
and Identity Management. – Elsevier Information Security
Technical Report - Volume 9, Issue 1, January-March
2004, Pages 59-76.

[14] Web Services Security Framework by OASIS -
http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wss

[15] Web Services Policy Framework (WS-Policy). Version
1.1. - http://msdn.microsoft.com/ws/2002/12/Policy/

[16] Web Services Policy Attachment (WS-PolicyAttachment).
http://msdn.microsoft.com/ws/2004/09/PolicyAttachment/

[17] “A grammar for Policies in a Generic AAA Environment”.
Work in progress. - http://www.ietf.org/internet-
drafts/draft-irtf-aaaarch-generic-policy-06.txt

[18] N. Li, W. Winsborough, J.C. Mitchell. 2003. “Distributed
Credential Chain Discovery in Trust Management”.
Computer Security. Vol. 11, No. 1, 2003: 35-86. -
http://theory.stanford.edu/people/jcm/papers/disc.pdf

[19] Web Services Agreement Specification (WS-Agreement) -
https://forge.gridforum.org/projects/graap-
wg/document/WS-AgreementSpecification/en/6

[20] Job Submission Description Language. Version 0.9. -
https://forge.gridforum.org/projects/jsdl-
wg/document/draft-ggf-jsdl-spec/en/12

[21] Security Assertion Markup Language (SAML) v1.0 -
OASIS Standard, Nov. 2002 - http://www.oasis-
open.org/committees/documents.php?wg_abbrev=security

[22] Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0. Committee Draft 03,14
December 2004 - http://www.oasis-
open.org/committees/download.php/10627/sstc-saml-core-
2.0-cd-03.pdf

[23] SAML 2.0 profile of XACML. Draft 02, 11 November
2004. - http://docs.oasis-open.org/xacml/access_control-
xacml-2.0-saml_profile-spec-cd-02.pdf

	INTRODUCTION
	GENERAL OCE SECURITY REQUIREMENTS AND PROPOSED JOB-CENTRIC SECURITY MODEL
	OCE SECURITY SYSTEM OPERATION
	POLICY BASED ACCESS CONTROL USING GENERIC AAA FRAMEWORK
	TRUST RELATIONS IN DISTRIBUTED AAA INFRASTRUCTURE
	USING SAML AND XACML FOR AUTHORISATION ASSERTIONS AND MESSAGING
	CONCLUSION AND SUMMARY
	ACKNOWLEDGEMENT
	REFERENCES

