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Trusted Virtual Infrastructure Bootstrapping for On 
Demand Services. 

 

 
Abstract— As cloud computing continues to gain traction, a 
great deal of effort is being expended in researching the most 
effective ways to build and manage secure and trustworthy 
clouds. Providing consistent security services in on-demand 
provisioned Cloud infrastructure services is of primary 
importance due to the multi-tenant and potentially multi-
provider nature of Cloud Infrastructure. Cloud security 
infrastructure should address two aspects of the IaaS 
operation and dynamic security services provisioning: (1) 
provide security infrastructure for secure Cloud IaaS 
operation; (2) provisioning dynamic security services. 
Although the first task is a traditional task in security 
engineering, dynamic provisioning of managed security 
services in virtualized environment remains a problem and 
requires additional research. Entire frameworks have been 
proposed and demonstrated but although successful, there is 
a tendency to see such solutions as integrated ‘all in one’ 
infrastructures. This paper describes a light-weight 
mechanism and protocol for building trust between two 
machines that takes advantage of the Trusted Platform 
Module (TPM) to handle a key exchange and remote trusted 
deployment of a bootstrapping tool (referred to as the 
Bootstrapping Initiator (BI)). Once deployed, the BI can 
execute any arbitrary software required which could be (but 
is not limited to) solutions for advanced architecture 
management such as the Dynamic Access Control 
Infrastructure (DACI). The proposed solution provides a 
light-weight layer of trust backed by a TPM that additional 
systems can build upon as required by the individual use 
case without the requirement for a specific management or 
security infrastructure to be deployed along with it.  

Keywords—Cloud Security, Trusted Computing, 
Bootstrapping, Deployment. 

I.  INTRODUCTION  
Cloud computing technologies [1, 2] are emerging as 
infrastructure services for provisioning computing and 
storage resources on-demand in a simple and uniform 
way. However, there is no well-defined architectural 
model for the Cloud Infrastructure a Service (IaaS) 
provisioning model despite its wide use among big Cloud 
providers such as Amazon, RackSpace, Google, and 
others. Recent research based on the first wave of Cloud 
Computing implementation have revealed a number of 
security issues both in actual services organizational, 
operational and business models [3, 4, 5]. The current 
Cloud’ security model is based on the assumption that the 
user/customer should trust the provider. This is governed 
by the general Service Level Agreement (SLA) that 
defines mutual provider and user expectations and 
obligations for the whole provisioned service but doesn’t 

allow dynamic Quality of Services (QoS) management for 
potentially changing resource availability due to changing 
resource demand and utilisation in the typically multi-user 
Cloud environment.  
 
Although Cloud providers are investing significant 
resources into making their own infrastructure secure and 
complying to existing security management standards 
(e.g. Amazon Cloud recently achieved PCI compliance 
certification [6] and announced providing special services 
for governmental organisations [7], Microsoft Azure 
claims ISO27001 compliance [8]), still the overall 
security of Cloud based infrastructures and services will 
depend on two other factors: security services 
implementation in user applications and binding between 
virtualised services and Cloud based virtualisation 
platforms, that should also ensure protection against 
malicious users and risks related to possible Denial of 
Service (DoS) attacks. 
 
Practical Cloud usage within one provider infrastructure 
creates illusion of unlimited availability, “elasticity” and 
“perfect” security (as claimed by the providers 
themselves), but in practice this is related only to limited 
range of services and with limited manageability. 
Currently implemented and offered security services are 
based on VPNs and provide only simple access control 
services based on users access over SSH channel. Recent 
improvements in GoogleApps allow SAML based Single 
Sign-On (SSO) [9] to connect/integrate Cloud based 
services and customer legacy access control 
infrastructure. More advanced security services and fine 
grained access control cannot be achieved without deeper 
integration with the Cloud virtualisation platform and 
incumbent security services, what in its own turn can be 
achieved with an open and well defined Cloud IaaS 
platform architecture to allow transparent interoperability 
and integration of heterogeneous multi-provider Cloud 
infrastructure services.  
 
Current development of Cloud technologies demonstrate 
movement to developing inter-Cloud models, 
architectures and integration tools that could allow 
integrating Cloud based infrastructure services into 
existing enterprise and campus infrastructures, on one 
hand, and provide a common/interoperable environment 
for moving existing infrastructures and infrastructure 
services to a virtualised Cloud environment. More 
complex and community oriented use of Cloud 
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infrastructure services will require developing new 
service provisioning and security models that could allow 
creating complex project and group oriented 
infrastructures provisioned on-demand and across 
multiple providers. 
 
Building a secure virtual infrastructure in such an 
environment is challenging. It is a requirement that not 
only can a service be trusted but also that the operating 
system and physical machine can also be trusted. When 
deploying infrastructure on-demand, the underlying 
hardware is generally accepted as trustworthy. However, 
if the trustworthiness of the underlying physical machine 
could be in question, then the trustworthiness of the entire 
infrastructure could be brought into question as well.  
 
Trust is built in layers, with each layer only as trustworthy 
as the layer beneath it. Generally when a machine is 
provided with an operating system, this is the first layer of 
trust. It is assumed that the operating system and the 
hardware are not compromised. However while this 
assumption could be considered acceptable in a hosting 
facility under direct control, it becomes severely stretched 
when machines are provided at remote locations by third 
parties. The situation is complicated further when 
multiple machines are involved. A cluster requiring a 
number of machines needs to ensure that each machine is 
trustworthy. If such a system needs to span data centers or 
even countries, the level of implied trust drops drastically. 
In these cases it would be beneficial to ensure that the 
remote machine that has been provided is in fact the 
machine that it is supposed to be. Specifically it would be 
desirable to be able to confirm the machine’s identity and 
further to ensure that it is the state that it is supposed to be 
in.  
 
Trust has long been associated with authentication [10], 
where one is tightly related to the other. Authenticating a 
machine and verifying its state can ensure that the 
machine has not been tampered with. However 
incorporating such a protocol directly into existing 
frameworks or software would increase their complexity 
and would likely create a number of disparate and 
incompatible systems. A generic bootstrapping protocol 
that can be adopted by frameworks (such as DACI 
proposed by the authors) is required. Such a protocol 
would have two key requirements. First it must be able to 
authenticate the remote machine and verify its 
trustworthiness. Second, it must provide a mechanism for 
transferring and executing the initializing the framework. 
 
This paper proposes a new generic bootstrapping protocol 
called the Dynamic Infrastructure Trust Bootstrapping 
Protocol (DITBP). This includes supporting mechanisms 
and infrastructure that takes advantage of the TCG 
Reference Architecture (TCGRA) and Trusted Platform 

Module (TPM). The TPM is used to provide a root of 
trust that extends from the physical hardware itself. The 
TPM is used to generate a key pair in hardware where the 
private key is never revealed (the key pair is non-
migratable). The key is only available when the machine 
is in a known and trusted state. The key pair is used to 
authenticate the machine and to decrypt the payload 
which is then executed to bootstrap the rest of the virtual 
infrastructure. 
 
The paper is organized as follows. Section II analyzes two 
typical usecases that require trusted bootstrapping. 
Section III refers to the core features provided by the 
TGC Reference Architecture and analyzes current 
limitations. Section IV provides an overview of a model 
for trusted bootstrapping and Section V analyzes the 
individual components of such a model. Section VI 
analyzes the bootstrapping process and Section VII 
provides a suggested implementation. Section VIII 
provides a summary and a direction for future work. 

II. USE CASE 
 

Collaborative infrastructure where machines are 
provided by multiple providers are becoming more 
popular. They are especially useful when working in 
geographically disparate teams. Often datasets can span 
many hundreds of gigabytes and are potentially being 
updated in real-time. Social media feeds such as Twitter 
where hundreds of updates are received per second, 
produce datasets that are large, immobile and constantly 
growing. For a remote researcher to work with this data, 
they must have a machine in close proximity to that data. 
Being able to confirm the identity of the machine and that 
it is running in a trusted state allows for a higher level of 
confidence when working on sensitive data. 

 
In the financial sector there is often the need to work 

with remote machines that are not under the direct control 
of the customer. Many financial exchanges offer high 
speed price feeds that clients need to respond to within 
microseconds in order to be competitive. Most exchanges 
are ‘first come first served’ and therefore response time is 
vital to a company’s potential success. Even high quality 
fiber networks introduce latencies far above this threshold 
which makes trading from a remote location impractical. 
To counter this problem, many exchanges and brokers 
offer some form of hosting or colocation. This allows a 
company to have a presence in close proximity to the 
market gateway and thus keep latency to a minimum. 

However, not all facilities offer colocation and in many 
cases, a prebuilt machine may be provided. Where 
colocation is allowed and the business provides their own 
machines, there is no guarantee that those machines have 
not been tampered with. Due to the nature of the business, 
these ‘front end’ machines are required to contain sensitive 
business information such as strategies in order to carry 
out their function. This in turn means that the value of the 
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data being placed at risk is quite considerable. While 
companies do this, it is because there is no alternative 
rather than being willing to trust the remote machines. 

 
These machines tend to exist in a tightly controlled 

networks. It is likely that the machines would not have 
Internet access and will be severely segregated (such as 
with firewalls). This limits the applicability of many 
existing technologies and would effectively block the use 
of Direct Anonymous Attestation (DAA) [11] (although 
infrastructure to support this does not currently exist in any 
case). In addition, these machines should be as bare metal 
as possible. Financial applications are latency sensitive 
and require as little support software running as possible. 
As a consequence it is not uncommon for multiple 
machines to work together, often deployed at different 
times. When new machines are added, it is critical that 
their identity be verified before the customer transfers 
proprietary content to it. 

 
This use case can be extended to any scenario where it 

is required that a remote machine be trusted but where it is 
also required that the infrastructure to allow this is as light 
weight and unobtrusive as possible. Thus an architecture 
that allows machines to develop a level of trust between 
them (which allows for trusted bootstrapping) but does not 
provide any additional layers (i.e. allowing the business to 
choose which additional infrastructure or software to run) 
is required. Such a solution would not replace any of the 
existing models, rather it would provide a low-level layer 
that other infrastructure solutions can build upon and 
extend. Such solutions can use this platform to provide 
their own services; for example Dynamic Access Control 
Infrastructure (DACI) [12]. 

 

III. TCG REFERENCE ARCHITECTURE (TCGRA) 
One of the key components in the Trusted Computing 
Group Reference Architecture (TCGRA) is the Trusted 
Platform Module (TPM). The TPM is a physical device 
that provides cryptographic functionality in hardware. 
Two of the key features provided by the TPM are the 
generation of encryption keys and the ability to measure 
the current state of a given system.  
 
One of the critical features provided by a TPM is the 
ability to create encryption key pairs in hardware. A TPM 
can create both migratable and non-migratable key pairs. 
If a non-migratable key pair is generated, the private key 
may never leave the TPM. Therefore only the one 
machine (or more specifically the particular TPM) is able 
to use the key pair for encryption and decryption 
operations. The TPM does not provide acceleration 
facilities and has limited processing power. It is generally 
only used for key pair creation and storage. 
 
The Platform Configuration Registers (PCRs) are a set of 
registers inside the TPM that store SHA1 hashes. The 

TPM measures data such as the Master Boot Record 
(MBR), boot loader and kernel. The PCRs use a 
ratcheting mechanism. When a file is measured, the 
SHA1 hash is computed. This is concatenated with the 
existing value in the PCR. The TPM calculates the SHA1 
of the combined value and stores the result in the PCR. 
The effect of this mechanism is that each new state 
depends on the previous state. If any of the previous states 
are different, all of the hashes generated from that point 
on will be different as well. This allows a root of trust to 
be created from system boot to the operating system itself.  
 
When a non-migratable key pair is created, it can be 
bound to the values stored in the PCRs. Which PCRs a 
key is bound to can be configured when the key itself is 
generated. A bound key can only be accessed when the 
PCRs are in the state that they were in when the key was 
created. This in effect allows a key pair to be only 
available to the system if that system is in a known and 
trusted state. For example, a machine that has been 
tampered with during the boot process would generate 
different PCR hash values. As the PCR values are 
different, the TPM will not be able to access the private 
key and so will not be able to conduct encryption / 
decryption operations and hence will not be able to 
authenticate using the key pair. Binding a non-migratable 
key pair to a known system state provides a method for 
authenticating a particular machine and ensuring it is in a 
trusted state.  
 
Direct Anonymous Attestation (DAA) was added in the 
TPM 1.2 specification. It provides a mechanism where a 
TPM can verify its authenticity without giving away its 
identity. However at present, the infrastructure to actually 
support DAA does not exist and the most popular Open 
Source implementation of the TCS stack (TrouSers) 
doesn’t support it either. DAA is also a fairly complicated 
protocol involving numerous different entities. It would 
theoretically require an Internet connection which in some 
restricted networks might not be available. The key 
benefit of DAA is that a TPM can prove that it is real 
without disclosing its identity but in a cloud environment, 
the main purpose of using a TPM is to identify a 
particular machine. As the infrastructure is not currently 
readily available and the main benefit is not useful in this 
context, a simpler system that does not depend on the 
Internet or external entities, would be more appropriate. 

 

IV. GENERAL SECURITY SCENARIO 
It is generally accepted that a trusted root is required in 
order for any trust relationships to be built. That is, for a 
client to authenticate a server, the client must already trust 
something (such as a Certificate Authority) in order for it 
to determine whether a server can be trusted (when it 
presents a signed certificate). When the provisioned 
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machine is provided by the end user, they are in a position 
to verify the identity of the machine directly. However as 
provisioned machines both virtual and physical are most 
likely provided by a third party who controls and is 
ultimately responsible for the service, they are an ideal 
candidate to provide the authentication service. 
 
The Domain Authentication Server (DAS) manages two 
distinct services. First, the service needs to handle the 
registration and initial authentication of newly 
provisioned machines. Second, it needs to handle 
authentication requests from client machines that wish to  
to authenticate and then bootstrap a given machine. Two 
key pieces of information need to be held by the 
authentication service for each machine that it provides 
authentication for. The DAS requires two key pieces of 
information. First, it stores the public SSL certificate used 
for authenticating the machine during the initial 
handshake and the machine's public key which is used to 
encrypt the payload. Second, the DAS holds configuration 
data that describes the state of the machine such as the 
state of the Platform Configuration Registers (PCRs) 
which describe the machine's trusted state. 
 
The provisioned machine on initial boot generates an SSL 
certificate and a TPM backed non-migratable key pair. As 
the private key can never leave the TPM, data encrypted 
using this public key can only be decrypted on this 
specific machine. Another machine could potentially use 
the SSL certificate, but without the TPM, it would not be 
able to decrypt the payload and authenticate itself 
successfully. As part of the registration process, the 
machine will transfer the SSL certificate and the public 
key to the DAS. The machine then waits for a 
bootstrapping request from the DAS. 
 
The client machine initiates the bootstrapping procedure 
by making an authentication request to the DAS. It must 
provide a unique identifier such as an IP address, 
hostname or service identifier (this is liable to be 
implementation and or context specific). The DAS will 
then send information on that machine to the client. This 
is the same information provided to the DAS when the 
provisioned machine initially registered. The client 
performs a similar key generation process to that of the 
provisioned machine. The client encrypts its public key, 
certificate and a nonce value using the target machine’s 
public key and submits them to the DAS. The DAS then 
sends a bootstrapping request to the provisioned machine 
which decrypts and verifies the request. The certificate 
will be used to verify the client's identity during the initial 
handshake and the key will be used to authenticate the 
payload's signature. Once configured, the provisioned 
machine informs the DAS that it is ready for the 
bootstrapping process to commence. The DAS then 
informs the client, that it may proceed. 

 
At this stage in the process, the client machine will only 
connect to a machine that has the certificate provided by 
the DAS. The provisioned machine will only accept a 
connection from a machine that identifies itself using the 
client certificate it received from the DAS. Once the 
machines have established an authenticated 
communication channel, the payload can be encrypted 
with the remote machine’s public key and sent to the 
remote machine for execution.  
 
As a trust anchor, the DAS is attesting that the public key 
provided to the client is a non-migratable, bound key pair. 
Therefore as only the machine with the correct TPM can 
decrypt the payload, the client can be assured that the 
target machine is in a known and trusted state. 
 

V. BOOTSTRAPPING INFRASTRUCTURE COMPONENTS  
 
DITBP uses TCP to communicate between nodes and 
TLS to provide end point security. Where a client 
connects to the target machine (the one to be 
bootstrapped), both client and server mutually 
authenticate each other based on the public keys provided 
to them via the DAS. Communication with the DAS also 
occurs over TLS, where the cloud vendor has either 
provided the certificate to the cloud customer or a third 
party trusted Certificate Authority is used. The DAS may 
or may not require mutual authentication via TLS. 
 
Message exchange is event driven. Each message or 
payload is tied to a particular event. A node may send or 
receive events in a request / response design pattern. 
When a client sends a bootstrapping request to the DAS, 
it should wait for a response from the DAS before sending 
any further messages to it. Communicating between nodes 
follows the same pattern, however a client can 
communicate with any number of nodes simultaneously. 
Messages are sent `point to point', that is the architecture 
does not route messages across multiple nodes. The actual 
message format depends on the specific implementation.  
A WebSockets based architecture for example, provides 
authenticated message channels. This would allow the 
nodes to communicate with the DAS or each other in a 
secure, event-driven, message based architecture. Such a 
solution scales well, is able to function via HTTP proxies 
and is generally firewall friendly.  
 
There are four key components to the bootstrapping 
process. The process enables a client machine to 
authenticate a remote machine, determine that the 
machine is in a trusted state and begin the bootstrapping 
process. 
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The Domain Authentication Server (DAS) provides a 
trusted root for the third party’s domain. It contains 
relevant information such as the public key for that 
machine’s non-migratable key pair. The tickets issued by 
the DAS allow the client to encrypt data specifically for a 
particular machine in a specified state. A new non-
migratable key pair should be created each time the 
machine is redeployed and therefore it is not possible to 
create a ‘one off’ list containing the key information. 
Further, by requiring the client to request the ticket 
directly from the DAS, the freshness and validity of the 
key data is increased. 
 
The Bootstrap Initiator (BI) is the application that is 
transferred to the remote machine in order to confirm the 
machine’s status before any infrastructure or software is 
deployed. The BI is responsible for Stage 2 of the 
bootstrapping process and begins the actual deployment 
of the core virtual infrastructure. 
 
The Bootstrap Requester (BREQ) is a client application 
that runs on the machine responsible for provisioning 
remote infrastructure. It communicates with its 
counterpart on the remote machine and handles Stage 1 of 
the boot strapping process. This involves four key parts. 
First, the BREQ authenticates the remote end-point and 
authenticates itself. Second, the BREQ creates the BI 
payload (a combination of the BI application, key pairs 
and other necessary files) by compressing the bundle and 
encrypting it with the remote machine’s public key. Third, 
the BREQ manages the transfer of the payload to the 
remote machine for execution. Lastly, it maintains an 
initial communication channel used by the BI to send any 
necessary deployment information back to the client. 
 
The Bootstrap Responder (BRES) is the counterpart 
server application. It is responsible for authenticating the 
machine to a remote client and verifying that the client is 
authorized to bootstrap the machine. Once each end point 
has been authenticated, the BRES will receive, decrypt 
and decompress the payload sent by the client. Once 
done, the BI application is executed. 
 

VI. BOOTSTRAPPING PROCESS 
 

The BREQ application will connect to the DAS and 
request authentication data for the remote machine that 
the infrastructure is to be deployed on. This contains the 
public key and certificate for the machine as well as other 
relevant data such as expected PCR configuration. BREQ 
will then create its own set of keys and certificates, and 
initiates a bootstrap request to the DAS. The DAS 
initiates a bootstrap request to the BRES on the target 
machine which contains the key pairs generated by the 
BREQ. BRES uses the keys to configure itself for the 

bootstrapping process. BRES signals the DAS that it is 
ready and the DAS then signals the BREQ.  
 
The BREQ will then connect to the remote server and 
both BREQ and BRES will mutually authenticate each 
other. BREQ then prepares the BI payload. This consists 
of at least the BI application and some form of unique 
identifier such as a key or nonce. The payload is then 
archived, compressed and encrypted using the BRES’s 
public key. Once the payload has been generated, BREQ 
will transfer the file to the remote server for deployment.  
 
After receiving the payload, BRES will decrypt the file 
with using the TPM non-migratable private key. This will 
allow the BI application and its support files to be 
decompressed and extracted. BRES will report a success 
message to BREQ and will execute the BI application.  
 
After executing the BI can set up the machine and run any 
additional tests that it requires. At this stage the trusted 
nature of the machine has already been established by the 
fact that the remote machine could decrypt the payload. 
However once running the BI can execute additional tests 
such as measuring other deployment files, verifying the 
network environment and so forth. 
 
Once the BI application is satisfied with the state of the 
machine, it can communicate with the client to report that 
the system is ready. The BI application then downloads 
the infrastructure payload (the BI is a required component 
of DITBP but its implementation is infrastructure 
specific). It then determines the authenticity of the 
infrastructure received before the infrastructure is 
configured and deployed. 
 
After all the deployment files have been transferred to the 
remote machine and have been verified and authenticated, 
the BI will execute the infrastructure framework and 
control will then pass to the framework. At this stage, the 
client’s infrastructure management system should be able 
to communicate directly with the infrastructure now 
running on the remote server. The infrastructure can then 
shutdown the BI and BRES instances as required. 
 

VII. IMPLEMENTATION SUGGESTIONS 
 
The NodeJS and SocketIO frameworks provide a secure, 
event driven message passing architecture. Predominantly 
used in web browsers to allow real-time 'push' updates, 
SocketIO can operate as both a client and a server when 
running on NodeJS. As SSL/TLS encryption can be easily 
used, (HTTPS is the most common method for 
communicating via SocketIO), channel authentication and 
data security are available as standard. By building the 
prototype implementation on top of these mature libraries, 
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the prototype can focus on the messages being passed and 
the general bootstrapping protocol without needing to 
concern itself with low-level message handling 
infrastructure. 
 
NodeJS has bindings for NaCL (pronounced salt) which 
provides a wide range of cryptographic functions. 
However at present there is no native binding for TPM 
functionality. For research and testing purposes, NodeJS 
can create the equivalent using traditional software based 
methods. 
 
While NodeJS makes an ideal candidate for prototyping 
the implementation, it would likely have too many 
dependencies to be deployed in production for either the 
BREQ or the BRES. It is anticipated that the DITBP will 
be integrated into the GAAA framework and as such a 
simpler implementation in a system programming 
language such as C or C++ might be more appropriate.  
 

A. Yin (BREQ) and Yang (BRES) 
 
Yin and Yang are discussed together as their 
implementations are similar. It is anticipated that rather 
than two separate applications both Yin and Yang will be 
implemented as a single application that runs in either 
BREQ or BRES mode. The key generation and 
authentication is very similar regardless of whether the 
application is functioning as a client or a server. 
 
Using the framework discussed previously, Yin and Yang 
can be built by focusing on message-based events and 
their payload. The exchange of data and the protocol are 
straight forward and synchronous at this stage. However 
in future, the protocol might add additional features that 
require more flexibility from the protocol. Following a 
message driven format allows for easy extension and 
rapid prototyping. 
 

B. Vanguard - Bootstrap Initiator 
 
The BI can be implemented in numerous ways. Vanguard 
was prototyped in Python. As long as the target machine 
can execute the application, there is considerable 
flexibility in the form that the application can take. 
Vanguard is a military term denoting a unit that travels 
ahead of the main force in order to determine whether or 
not the way ahead is safe for passage. In this case the 
application is executed on the remote machine, downloads 
a sample payload from a secure site and executes it. The 
functionality of the BI is inherently application and 
context specific, although it is likely that a particular 
framework will use only one BI application. 
 

C. KeyStone - DAS Server 
 
The DAS server can also be implemented using NodeJS. 
As it will run on an independent machine and does not 
need to be integrated into a framework, the design 
requirements for this component allow for some 
flexibility. Using SocketIO for the prototype allows 
KeyStone to easily interact with both Yin and Yang over 
the same transport mechanism. Storing and managing the 
key and configuration data are implementation specific 
and depends on the goals of the infrastructure vendor. 
 

D. Integrating with the Common Security Services 
Interfaces (CSSI) framework 

 
For trusted bootstrapping to prove valuable, it is vital that 
the security context is kept consistent between the 
physical and virtual infrastructures. In order to do this, 
DITBP needs to be integrated with the bootstrapped 
framework (such as DACI). However this will require 
special mechanisms to be developed to provide an 
interface between these two layers.  
 
The GAAA-TK (developed by the authors) has a rich set 
of functionality that could be extended to support the use 
of Dynamic Infrastructure Bootstrapping (DIBP). CSSI 
(also proposed by the authors) currently includes 
authentication, authorization, session and security data as 
part of the Security Context (SC). This would need to be 
extended to include the additional trusted bootstrapping 
information. 
  

VIII. SUMMARY AND FUTURE WORK 
 
This paper presents the ongoing research on developing a 
trusted bootstrapping protocol for dynamically 
provisioned infrastructure to support high confidence 
computing in modern distributed computing 
environments. 
 
The paper analyzes the use case of sensitive computing 
requirements on disparate infrastructure and identifies 
required protocols and mechanisms to allow greater 
confidence using remote machines. This includes both 
bootstrapping and preparing a remote system for use and 
generic processing on such a system where sensitive data 
or intellectual property might be exposed. 
 
The paper proposes the Dynamic Infrastructure Trusted 
Bootstrapping Protocol (DITBP) and suggests a generic 
implementation that will provide a trusted bootstrapping 
layer for other frameworks (such as DACI) to leverage as 
a trust anchor. 
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The paper refers to the DACI framework which provides 
a general implementation for dynamically provisioned 
access control infrastructure as well as the GAAA Toolkit 
library that provides security context management. 
 
The authors believe that concepts proposed in this paper 
will provide a good basis for further discussion among 
researchers about defining architectural models for 
dynamically provisioned virtualized security services as 
part of the general on-demand infrastructure services 
provisioning. 
 
 
 
 
 

References 
 

[1] NIST SP 800-145, “A NIST definition of cloud 
computing”,[online] Available: 
http://csrc.nist.gov/publications/drafts/ 800-145/Draft-SP- 
800-145_cloud-definition.pdf 
 
[2] GFD.150 Using Clouds to Provide Grids Higher-
Levels of Abstraction and Explicit Support for Usage 
Modes. [Online]. 
http://www.ogf.org/documents/GFD.150.pdf 
 
[3] Security Guidance for Critical Areas of Focus in 
Cloud Computing 
V2.1. Cloud Security Alliance, December 2009. 
http://www.cloudsecurityalliance.org/csaguide.pdf 
 
[4] Cloud Computing: Benefits, risks and 
recommendations for information security, Editors 
Daniele Catteddu, Giles Hogben, November 2009. 
http://www.enisa.europa.eu/ 
act/rm/files/deliverables/cloud-computing-risk-assessment 
 
[5] Securing the Cloud: Designing Security for a New 
Age, Dec. 10, 
2009. [Online] http://i.zdnet.com/whitepapers/ eflorida_ 
Securing_Cloud_Designing_Security_New_ Age.pdf 
 
[6] Amazon AWS Security Center. Certification and 
Accreditation. [Online] 
http://aws.amazon.com/security/#certifications 
 
[7] Amazon Boosts Web Services Security for 
Government Agencies. 
PCWorld Business Center. April 17, 2011. [Online] 
http://www.pcworld.com/businesscenter/article/238276/a
mazon_boos 
ts_web_services_security_for_government_agencies.html 
 

[8] 8. Kaufman, C., R. Venkatapathy. Windows Azure 
Security Overview. [Online] 
http://download.microsoft.com/download/6/0/2/6028B1A
E-4AEE- 46CE-9187-
641DA97FC1EE/Windows%20Azure%20 Security%20 
Overview%20v1.01.pdf 
 
[9] SAML Single Sign-On (SSO) Service for Google 
Apps. [Online] 
http://code.google.com/googleapps/domain/sso/saml_refe
rence_imple mentation.html 
 
[10] R. Yahalom, B. Klein, and T. Beth, “Trust 
relationships in secure systems-a dis- tributed 
authentication perspective,” in Research in Security and 
Privacy, 1993. Proceedings., 1993 IEEE Computer 
Society Symposium on. IEEE, 1993, pp. 150–164. 
 
[11] E. Brickell, J. Camenisch, and L. Chen, “Direct 
anonymous attestation,” 
. . . of the 11th ACM conference on . . . , 2004. [Online]. 
Available: 
http://portal.acm.org/citation.cfm?id=1030083.1030103 
 
[12] Y. Demchenko, C. Ngo, and C. de Laat, “Access 
control infrastructure for on- demand provisioned 
virtualised infrastructure services,” in Collaboration Tech- 
nologies and Systems (CTS), 2011 International 
Conference on. IEEE, 2011, pp. 466–475. 


