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Abstract—This paper proposes an extension to the generally
accepted definition of Big Data and from this extended definition
proposes a specialized database design for storing high through-
put data from low-latency sources. It discusses the challenges a
financial company faces with regards to processing and storing
data and how existing database technologies are unsuitable for
this niche task. A prototype database called CakeDB is built
using a stream oriented, disk based storage design and insert
throughput tests are conducted to demonstrate how effectively
such a design would handle high throughput data as per the use
case.

I. INTRODUCTION

Big Data has become one of the hottest topics in the
computer science field. Although Big Data itself is not a
new concept and many disciplines have been dealing with
such data for decades, it is only relatively recently with the
availability of cheap compute cycles and storage provided by
Cloud Computing that the ability to process such large volumes
of data has become practical for the majority of researchers.

However, although the focus is on processing Big Data
in the cloud, there are still more traditional requirements for
Big Data. Not all datasets are suitable for storage in the cloud
due to technical (data size) and business (proprietary informa-
tion) reasons. These systems require an on-site database that
cannot take advantage of cloud architecture (i.e. the ability
to scale out). This paper demonstrates that current database
technology is not sufficient for this task and proposes an
alternative database design specializing in storing low latency
high throughput stream oriented data.

This paper examines a use case study from a financial
company and its requirements for such a database. It highlights
where the currently accepted definition of Big Data (the 3V
model) does not fully capture the requirements of such a
company. Extensions to the model that take Value into account
are then proposed and discussed.

A prototype implementing the database design called
CakeDB is tested for write performance and demonstrated to
be significantly faster than MongoDB for the specified use
case.

II. DEFINITION OF VALUE IN BIG DATA

For data streams that run indefinitely, one of the biggest
concerns for a company is the value of the data being stored.

One of cloud Computing’s defining features is the cost effec-
tiveness of the resources that it offers. Despite lowering the
cost of storage, such storage is still not free. Therefore when
determining what data to store, the value of that data must be
considered.

For example, market price data is a very specific form of
data found in financial companies that contains the history of
a given market or financial instrument. This data is used for
back testing and verifying models and developing strategies
amongst other things. The perceived value in having such data
is that the data reflects how the market truly behaved at a
given time and therefore allows more accurate simulations to
be created. This level of data is not generally available for
commercial purchase and so in order to maintain this data a
company must record it.

However recording the data does not bring any value to
the company. It only becomes valuable once that data is used
or processed. With traditional amounts of data, storing almost
anything indefinitely posed limited financial or technological
challenges, but Big Data has changed this significantly. Now
it is possible to fill vast amounts of storage space with data.
The problem is that it is possible that the storage of such data
greatly exceeds any potential benefit for storing such data.

Different database systems offer different cost benefits due
to their design and structure as well as their intended use case.
When considering Big Data it is crucial to examine the data
being stored as well as the potential systems for storing that
data. One system might be extremely expensive and hence
unsustainable whilst another might offer similar features that
can be sustained potentially indefinitely. Key to understanding
this concern is being able to determine the likely throughput
and hence total volume of data stream and then to determine
whether the value of the data is high or low.

A. High Value Data

High Value Data (HVD) is data that has a known benefit
from its storage. Companies that sell online storage space for
example fall under this category. Theoretically, the more data
that is stored, the greater the value will be. As long as the
return on the data stored exceeds the cost of storing it, the
company can continue to store such data indefinitely.

The value of data does not have to be measured as a dollar
amount. However it needs to be understood that there is a



cost associated with data storage regardless of how that data
is valued. Storing cultural or historical data has significant
cultural value. The cost of storing that data might very well
exceed the financial benefit drawn from storing it – but that is
offset (and presumably paid for) by the community itself.

B. Low Value Data

Low Value Data (LVD) is data that is stored in the
anticipation that value will be drawn from it in the future.
Market tick data is a good example of this. Storing such data
has limited use and generates no value when it is simply
stored. When used for back testing and simulation, it is more
valuable because it represents how a market did react to a given
situation rather than how it theoretically should react. However
this does not implicitly confer value to the data – similar
results can be found from artificially constructed data as well.
Such data becomes valuable when new systems, strategies and
methodologies are developed based on that data. Until then the
data has minimal value, but continues to be stored because of
the potential for gaining value.

C. Storing the data

The key difference between LVD and HVD is the means of
storage. With HVD, there is much less concern about storing
the data because it generates an immediate or known return to
cover such costs. LVD however may never bring a return on
investment and so expensive storage systems are not likely to
be used.

III. RELATED WORKS

Existing database technologies have become more focused
on specific niche requirements. Michael Stonebraker and his
fellow researchers are responsible for the H-Store [1] and C-
Store [2] databases. However their database structures are re-
lational and as such do not support highly structured ‘NoSQL’
datasets. The same is true for key-value store systems (such as
memcached [3] and Riak), they were not designed to handle
this sort of dataset.

There are two main choices for this style of data; Mon-
goDB [4] and CouchDB [5]. CouchDB stores data in native
JSON format and takes a unique approach to indexing data.
Where RDMS systems have static data and dynamic queries,
CouchDB implements dynamic data and static queries [6] lead-
ing to fast reads only when indexes are available. CouchDB
also has a REST (REpresentational State Transfer) interface
which makes querying less efficient. Insert performance, even
with batch jobs is relatively, around 700 updates per second.

In contrast, MongoDB is more like traditional SQL
databases. It is possible to do dynamic queries and due to
its BSON (Binary JSON) storage format offers JSON-like
structures but with very fast search and parse times. However
being memory mapped, physical memory is a highly limiting
factor. Once data exceeds this limit, performance drops to the
point of being unusable.

These limitations make such databases unusable for han-
dling Low Latency High Volume structured data streams.
Structured data streams need to be able to store data in a JSON-
like format, ruling out RDMS and key-value storage systems.

The system also needs to support high throughput writes of
at least 25,000 inserts per second. With a REST interface,
CouchDB cannot support this demand, leaving MongoDB as
the only viable choice. However being memory based the
amounts of storage is greatly limited, particularly for HVLV
data streams.

IV. USE CASE – FINANCIAL TRADING COMPANY

One of the industries most affected by Big Data is the
financial sector. Businesses that operate in this sector must
manage a large variety of different data requirements, all of
which are core to the success of a business. This case study will
examine the different sources of data and the data structure.

There are two fundamental sources of data for a financial
company. Data can be classified as either internal or external
data depending on the source and destination of the data.
Generally, external data and internal data are not directly
compatible and must be converted to and from the relevant
data structure when the data crosses the company boundary.
This means that a company must be able to process each
of the external data formats into an internal form that its
systems can handle as well as being able to convert it back
to an external format when required. Figure 1 highlights how
different systems may inter-operate in a given trading system.

Fig. 1. Trading System Message Flow

Financial companies need to store extensive amounts of
highly structured data for extended periods of time. This data
is generally highly structured and whose structure is in a
constant state of flux. Over time many terabytes of data will
easily be accumulated. Data needs to remain quickly accessible
while maintaining low latency high throughput. Specifically,
the impact on a sending application should be minimized to
prevent delays in the database from introducing latency and
response spikes in the application itself.

V. DESIGN REQUIREMENTS

There are two key design requirements for such a database.
First, data needs to be inserted deterministically with respect
to the client and with minimum impact. Second, the data
should be easily extractable regardless of the size of the
database. Queries should run in a reasonable amount of time,
but high performance is not a requirement. Thus while it is
not acceptable for the database to cause a client application to
take a performance hit, it is acceptable for read queries to take
a performance hit.



These design requirements break down further as follows:

• Does not block the client

• Has low impact on the client

• Can accept data at high speed

• Takes full advantage of available resources

• Copes with burst traffic

• Can operate on a single machine

• Queries are executed in a reasonable time

CakeDB was designed with each of these requirements in
mind. It has a simple binary streaming interface for receiving
inserts and due to its internal architecture can never block the
client (barring any TCP buffering issues etc). It can accept data
at high speed and, using the Erlang Open Telecommunications
Platform, is able to fully utilize all resources on a machine
(particularly multi-core). It uses memory to buffer incoming
requests and a latching mechanism to take the actual writing
process off the critical path. This allows it to handle large
amounts of burst traffic and to do so on a single machine.

It was also designed to be used as a fast storage engine
so that client applications writing extensive amounts of data
would not be impacted by any slowness in the storage layer.
Relational databases have to maintain multiple different views
of data and indexes need to be calculated and data processed.
This approach makes inserts non-deterministic and therefore
not ideal for low latency real time environments. MongoDB
writes data directly to memory, using memory mapped files as
back-end storage. This combined with ‘unsafe writes’, allows
MongoDB to have extremely fast insert performance. However
it must still convert the data payload to BSON for storage
and update any relevant indexes. Therefore while MongoDB is
far more deterministic than a relational database, the overhead
involved in processing and storing the data can be extensive.

For executing queries CakeDB currently has very limited
features. As a natural order database, CakeDB can either
return all data in a particular time range or all data since a
specific time. This allows chunks of relevant data to be quickly
retrieved and loaded into more traditional analysis tools. The
ability to request ‘all changes since’ allows ‘Sweeper’ applica-
tions to be written, polling the database at regular intervals and
retrieve all of the new results for inserting into other databases.
This allows CakeDB to operate as both a long term storage
system (ideal for when datasets exceed the threshold for a
given processing database) as well as a buffer system to move
slow processing tasks off the critical path (useful for latency
sensitive applications).

CakeDB is highly specialized and would be of limited use
as a general purpose database. However for handling high
speed streaming data, it is able to consistently out perform the
alternatives that are currently available. The following sections
discuss these design requirements in greater detail.

A. Does not block the client

Particularly when dealing with this type of data, it is
critical that the capturing application cannot be blocked by the
database. An insert might normally take 100 microseconds but

should the database decide to write an index or handle a query
from elsewhere, this could block an insert which might take
1000us instead, potentially creating an unacceptable backlog
and delays elsewhere in the system. For example, it would be
unacceptable for a market feed capturing tool to slow down as
this could lead to severe financial consequences.

A database that does not block the client must operate
asynchronously and there should not be a response cycle where
each insert is acknowledged before the next insert can be sent.
The database must accept a stream of data from the client and
continue to do so. If the database cannot handle the load, it
should drop the connection, an error condition that the client
can easily handle. This would prevent the client application
from creating a backlog of data, overwhelming the program.

B. Has low impact on the client

When thousands of messages are being processed each sec-
ond, even small amounts of processing overhead per message
can greatly affect a system’s performance. The time needed
to convert native data into a format the database driver can
understand can be significant. A database that can handle high
throughput data needs to limit the effect of using that database
on the client. Ideally sending data should be as close to sending
the native format on the wire as possible. This means the
database design needs to be aligned for the sorts of data that
will be sent.

It also means that as much of the processing logic should
be pushed to the server side as possible, making the database
driver a basic socket wrapper rather than be responsible for
data translation. This in turn means that the database must
handle that task instead. By aligning the data structures in the
database to those sent by the client the need for heavy data
processing is reduced although not eliminated entirely. With
clients generally having more CPU power available to them,
the shift to pushing the load on to the database server opposes
the current trend of near-side processing. However CPU power
alone is not enough to resolve the latency issues (throughput
then becomes a problem) and many newer collection devices
are low-powered embedded systems or related devices. Pro-
cessor cycles on such devices are at a premium and thus it is
desirable to push the workload on to the server.

By aligning the database with the data that it needs to
store (potentially with multiple data storage types) and pushing
the processing on to the server, the impact on the client for
sending data to CakeDB is greatly reduced. Combined with
guaranteeing that the client will never block and that there
is no need for extensive error checking code, means that the
footprint on an application for using CakeDB is little larger
than using raw TCP sockets directly.

C. Can accept data at high speed

High speed is defined as 10,000 updates per second. This
is reasonable based on known flow rates on financial markets
and anticipated flow rates from services such as Twitter. Many
databases can easily burst to this level of inserts but depending
on the database, maintaining a steady stream of data at this
speed can push some beyond their limits.

In order to be able to handle high speed data, the database
must limit the amount of processing or overhead that occurs



during the writing process. As 10,000 updates per second as the
minimum benchmark, if the database cannot clear this many
updates per second, it will ultimately have a backlog from
which it can never recover. This would slow down the database
and has the potentially to ultimately cause it to fail.

D. Takes full advantage of available resources

Due to the type of data being stored (low value, large
storage), being able to take full advantage of a given machine’s
resources is paramount. For these use cases, it is not possible
to solve the problem by simply adding more hardware as the
collection of more data does not necessarily bring with it an
expected increase in profitability. Thus whilst a reasonable
specification machine may be provided for the data collection
(or perhaps several), the number of machines will not be able
to grow much beyond their initial number.

To make the most of available hardware, a database should
make full use of all available cores on a given machine or
cluster. The database should be able to maximize it’s through-
put without requiring special configuration or optimization at
the code level for different platforms. The Erlang OTP (Open
Telecommunications Platform) emphasizes a very powerful
process based application development model which allows
the Erlang VM to fully utilize all CPU cores in an efficient
way and was designed for the high throughput and soft real
time requirements of the telecommunications industry.

E. Copes with burst traffic

Although the benchmark is 10,000 messages per second,
it is possible for such feeds to burst well beyond this to
100,000 messages per second or more. The database must
be able to cope with periods of intense bursting and recover
without impacting the client. This is challenging because a
burst of a factor of 10, would put the database under equally
higher load which it may not be able to handle. Performance
degradation can happen during these burst periods leading to
residual performance issues at regular speeds once the feed
returns to normal.

To properly handle burst traffic a mechanism is needed
that can buffer or absorb the load for a period of time.
This can be done by using RAM to buffer data for example.
Whatever solution is used, the sudden burst should not have
any noticeable effects to the client application.

F. Can operate on a single machine

Related to the previous section on efficient resource usage,
the database needs to be able to operate appropriately on a
single machine of sufficient specification. That is, the problem
should not be solved by creating a large database cluster as this
amounts to using brute force. There will undoubtedly be feeds
that a slower machine could not handle but a faster machine
could and this comes down to specifying the right machine
for the task. However that is different from using substantial
resources to allow an inefficient system to still perform at a
reasonable and acceptable level.

Using Erlang and not requiring large amounts of memory,
the database will be able to take full advantage of the hardware
and to use it efficiently. As the database is specifically designed

for high throughput workloads, the design reflects trade offs
that a general purpose database cannot make and thus is able
to perform at a much higher level on comparable hardware.

G. Queries are executed in a reasonable time

CakeDB was designed with a focus on high speed, low
impact inserts. However retrieving data from CakeDB is also
important. Querying data from a heavy over loaded database
is extremely slow, where simple count queries can take many
minutes to execute. This is the case with MongoDB when the
dataset and indexes greatly exceeds the amount of physical
memory in the machine. MongoDB has no concept of disk
access and will access memory as it sees fit. This causes a
huge number of page faults, as MongoDB tries to access the
index (and hits disk), tries to access the data (and hits disk
again), followed by another index read (which will likely hit
the disk).

This level of performance is unacceptable but it is clearly
caused by using the database outside of its designed parame-
ters. CakeDB must respond to queries within a reasonable time
frame. However CakeDB provides querying tools suitable for
data mining and extracting data for further processing. It is not
designed for OLAP or OLTP. It provides a minimal interface
for extracting blocks of stored data from streams but currently
does not have enhanced querying capability, a feature that is
highlighted under future work.

VI. NATURAL ORDER STORAGE

CakeDB is a natural order stream based database. This
means that data is stored in the order it is received by
CakeDB and assigned a unique timestamp as an identifier. The
timestamp used is guaranteed by the VM to monotonically
increment and thus not only describes each document stored
but also its order. This is only effective on single machine in-
stances and so for clustered operation some form of additional
identifier will need to be derived.

Due to the nature of the data, data-files are written to in an
append-only fashion. This provides some protection against
data corruption but also makes it easy to reason about the
location of a given data item. In effect the stream is indexed
based on insert time and thus data extraction with a time range
is extremely fast and efficient. To improve performance further
a simple indexing system is used where the byte location of a
data item is recorded with a timestamp every 1,000 documents
or 50MB of data inserted. It is expected that this option could
be tunable based on the streams use case.

A. Binary Format – Disk

CakeDB also stores data in a binary format on disk. The
current scheme is simplistic and not suitable for production us-
age. This is being actively developed to add greater robustness
to the system. Data is stored with a 16 byte header consisting
of the document size, its timestamp and one of several options
(currently not used). A secondary index file is used to allow
fast searching to any data point in the stream.



B. Binary Protocol – Wire

For performance reasons, CakeDB implements a binary
protocol. The protocol has a set 6 byte header consisting of
a 4 byte message length and a 2 byte integer specifying the
command. All data is encoded in big-endian format for use on
the wire.

The format is very efficient for sending data for most
languages and does not require any supporting code or ad-
ditional parsers to prepare the data for sending. All processing
is effectively pushed to the database server. CakeDB currently
only supports a raw stream and so it is highly efficient for
storing data regardless of the composition. With a raw stream,
clients can store POJO or other arbitrary binary data without
any trouble.

VII. STREAMING INSERTS

A database supports streaming inserts when it does not
need to acknowledge receipt of data before the client can
send additional data. In the general case it is expected that
the database is able to handle the data that is sent to it. Should
the database fail, the client should be notified (in the case of
CakeDB this is done via a disconnect). There is limited benefit
in high speed systems of this kind to send individual status
messages. Often by the time the client is able to recognize
that an error condition has occurred, it will no longer have the
data it needs to correct the situation. Assuming that the client
did have the data the delays incurred trying to recover from
the error condition could be significant and would potentially
be unrecoverable and make a bad situation worse.

CakeDB is designed on the “let it crash” paradigm [7],
i.e. fail fast and fail early. This requires that as soon as an
error condition is detected, the process or application should
fail immediately. With CakeDB, as soon as an insert error
is detected, the client is immediately disconnected allowing
the client to recovery quickly by reconnecting and continue
sending data. This form of failure is extreme in that it would
cause data loss. However it also limits the amount of data
that would be lost and prevents potential cascade failures as
multiple applications try to handle the data loss and start
having issues of their own.

CakeDB does not acknowledge inserts with the implied
contract, that if the client is not disconnected, CakeDB will
ensure the data is persisted to disk. This in turn means that
the client can (and should) send data as fast as it is able to.

VIII. ADOPTING THE ERLANG OTP

Erlang was developed by a small team at Ericsson lead
by Joe Armstrong with the first version being completed in
1986 [8] and ultimately open sourced in 1998. Erlang was
developed to address a key issue in software engineering, that
of stability and reliability in systems known to be susceptible
to errors [9]. Armstrong believed that existing multi-threaded
share-everything designs were too inter-connected to allow
faults to be properly isolated and believed that a process based
messaging passing model would be sufficient [10]. This design
also makes Erlang exceptionally good at utilizing multi-core
systems as the process model prohibits shared state and hence
there is extremely little locking in Erlang [11].

The message passing paradigm is not unique to Erlang and
can be found in other languages such as Scala written for the
JVM (Java Virtual Machine) [12]. However the challenges re-
quired for integrating a message based paradigm with a thread
based paradigm are not insignificant [13]. Although Scala
allows both paradigms to be used simultaneously, ultimately it
must execute code on the JVM. As this is inherently shared-
state and thread based, there are limits to what a language such
as Scala can do. Erlang on the other hand has a VM written
in C that is designed from the ground up to fully support the
message passing paradigm [14]. This combined with Erlang’s
included libraries for easy integration with C and Java [15],
makes Erlang a very strong candidate for CakeDB.

In Erlang, each task is represented by a lightweight process.
These processes communicate with each other by sending and
receiving messages. Each process is independent in its own
right and does not share state with any other process. This
provides a unique form of isolation that allows processes to
fail without necessarily affecting any other process (unless the
developer so wishes). Erlang takes advantage of this unique
form of isolation and combines it with a supervisory tree that
allows processes to inform other processes that they have failed
(or simply exited). This allows other processes (generally
specifically designed for the task) to restart the failed process
or take any corrective steps. When written properly, an Erlang
application is extremely resilient to failure.

This is desirable when writing a database but is not the
prime benefit for CakeDB. By isolating application logic into
processes, there is no shared state and internal state is kept
within the process itself. Processes operate on messages that
they receive. This means that as long as the process has
messages, it can be processed completely independently from
any other process. This benefit is easily seen on a multi-core
system where there may be 12 or more cores. Erlang is able
to schedule work across all 12 cores efficiently as there are
no inter-dependencies. For CakeDB, each stream is unique, it
does not need to share information with any other stream. This
allows for easy parallelism across streams.

IX. CAKEDB LATCHED WRITER

CakeDB uses a latched writer to ensure minimal impact
on client performance. Each client connection has a dedicated
Erlang process that handles all of that processes communica-
tion with CakeDB. To ensure minimal impact when writing to
CakeDB, it is essential that this client process does not have to
make any blocking calls. Specifically it must not be responsible
for any tasks that could effectively block the process from
handling incoming data from the socket.

To achieve this, the client process takes the data and passes
it to the process responsible for handling that particular stream.
This decouples the client handling process from the writing
process and ensures that it cannot be blocked. As the stream
process can be receiving very large amounts of data at any
given time, it is highly likely that incoming message load may
exceed the machines capacity for writing the data to disk. To
ensure that the stream process does not become disk bound,
a second process is responsible for handling disk I/O. When
there is data to be written, the stream process will send the
bundled data (the stream process is responsible for processing
the data ready for storage) to the writer process.



At this point, the stream process will start to buffer newly
arriving data internally. When the writer process has committed
the data to disk, it will send a ‘clear to send’ message to
the stream process. When this message is received, the stream
process will transfer the bundle to the writer process and return
to buffering data. This design ensures that as long as there is
sufficient ram in the system to handle the load bursts, CakeDB
can continue to provide high performance, even under very
heavy load.

Fig. 2. Latched Writer

X. CAKEDB INTERNAL STRUCTURE

CakeDB is built on the Erlang OTP platform and as such
has a process orientated design and follows best practice as
outlined by Joe Armstrong [16]. Each of the core components
of CakeDB are implemented as independent functions. These
functions communicate via message passing. There is no
shared memory and no shared state as is common in most con-
current systems. By avoiding these (mutexes and related locks),
Erlang (and hence CakeDB) can avoid the heavy concurrency
related penalties paid by other systems (such as MongoDB’s
global write lock) and gain considerable performance benefits.

XI. INTERNAL PROCESSES

CakeDB uses Range to provide a TCP acceptor pool. Range
creates a number of processes that wait for an incoming TCP
connection to handle. Range defines the process structure of
a protocol which is then implemented by the developer. This
is where the application logic for handling the connection is
placed.

A. Stream Manager

The Stream Manager (SM) is responsible for initiating
streams and assigning them a unique Stream ID (SID). During
communication with a client, all read and write requests must
contain the SID of the stream that the client wishes to write to
or read from. The SM is currently very simplistic and does not
maintain state. Future implementations could add additional

features such as storing stream statistics, access credentials and
other related services. The flow of the process can be seen in
Figure 3.

Start

Receive Data

Register request?
No Yes

Does Stream exist?

Send Stream ID Create Stream

Filename request?

Send Filename

Yes

Stop

Yes

No

Fig. 3. Stream Manager Process Flow Chart

B. Stream Process

The Stream Process is responsible for receiving write
requests from the connection processes. Once a write request
is received it is added to an internal buffer in the process.
The Stream Process works in tandem with the Stream Writer
Process (SWP). When it receives a Clear To Send (CTS)
message from the SWP, it will send the buffer to it. It then
continues to buffer data until the SWP sends another CTS
message (see Figure 4).

Fig. 4. Stream Process Flow Chart

The Stream Process initially starts with ClearToSend set to
true. This means that the first time it receives a data message
it will be sent to the SWP rather than held in a buffer. After
this initial send, ClearToSend is set to false and all future
data messages will be added to the buffer after processing.
The buffer will only be sent to the SWP after another CTS
message has been received. In this way, there is a feedback
mechanism between the process receiving the data (SP) and the
process handling the file IO (SWP). As this is an asynchronous
relationship, delays in file IO will not impact the SP.

Data processing is kept to a minimum to avoid any unnec-
essary overhead. The CRC32 checksum is calculated for the
message and the headers (defined in the file format) are added.

The Stream Process also implements a 5 second timeout
when waiting for new messages. This timeout allows the
process to do house keeping such as executing the garbage
collector and checking to see if any data needs to be sent to
the SWP. There is also a 50,000 message maximum buffer
size. When this is reached, the SP will automatically forward
the buffer to the SWP regardless. This is a failsafe device that
should never be needed in practice.

C. Stream Writer Process

The Stream Writer Process (SWP) is responsible for writ-
ing data to disk as well as updating the index file. When first



initialized, the SWP checks its statistics to determine whether
it needs to update the index file. Initially it will have written
no data, so this section will be skipped. At present the current
implementation updates the index after every 50MB or 1,000
messages are written to disk. It then calls receive to wait for
a new message from the Stream Process (SP). Once a new
message is received, the SWP will write the data to the file
and then send the Clear To Send (CTS) message back to the
SP. It then repeats the index checks before waiting for the next
message (see Figure 5).

Fig. 5. Stream Writer Process Flow Chart

The SWP also implements a 5 second timeout which is
used to manually trigger garbage collection.

D. File Manager Process

The File Manager Process is part of the Erlang VM.
In order to improve efficiency (and remove some of the
concurrency pitfalls when using native IO) all read and write
requests go through a special Erlang process. This process then
handles the IO on behalf of the Erlang VM.

It is possible to assign special ‘asynchronous threads’ to
the Erlang VM. These threads are used specifically for IO
operations so that the Erlang scheduler threads do not block
waiting for IO to be handled.

XII. FILE FORMAT

CakeDB currently has a very basic file format. The ini-
tial file format was very rudimentary consisting solely of a
timestamp, length and payload. This performed very well but
should the database fail or data be damaged, there would be
no easy way to detect the failure. Therefore a more robust file
structure for the data file was devised (see Section XII-A). In
addition to the data file, CakeDB also generates an index file.
This file is still very basic consisting of a timestamp, a type
and a byte offset. There is currently no redundancy or headers
for this file (see Section XII-A).

Fig. 7. CakeDB Format - Index File

A. Data File Format

The data file format is designed to be optimal for reading
sequentially. Due to CakeDB’s natural order design, requests
for a block of data (that is from timestamp A to timestamp
B) can be retrieved very efficiently. The structure is show in
Figure 6.

Fig. 6. CakeDB Format - Data File

SoM (Start of Message), SoP (Start of Payload) and EoM
(End of Message) are all three byte repeated sequences. They
are used by CakeDB to determine whether the message read
from disk follows the correct structure. This correctness is
tested using Erlang’s binary pattern matching. If these se-
quences are not in the expected locations, CakeDB will throw
an error. It is anticipated that this mechanism can also be used
to recover data files that become corrupted as CakeDB will
be able to determine the last valid message and remove the
damaged section.

B. Index File Format

The current implementation of the Index File Format is
simplistic. It does not implement any error checking and is
effectively an array of timestamps and byte offsets. This file is
iterated when executing a query to find the closest offset for a
given timestamp. This is then used to open the data file at the
right location. Although there has been no optimization done
on the index file (it is opened and read sequentially for each
query in the current implementation), it remains extremely
small compared to the data file size. A data file of 250GB could
have an index file only 100KB in size. Sequentially reading a
binary file has limited impact on performance.

The structure of the index file can be seen in Figure 7. The
Type field is currently unused by the query engine but allows
the process updating the index to specify what action caused
the index update. For example, were 1,000 messages written
or was the 50MB limit reached?

The index file could be improved in a number of ways
such as by adding redundancy and proper headers. Further
performance could probably be gained from moving this data
to an in-memory data structure. However given the current
performance requirements, this has yet to be a concern.

XIII. INITIAL THROUGHPUT EXPERIMENT

A benchmarking script took a fixed JSON message and
then attempted to store that message using the most appropriate
method for the given database. There were two messages used



for this test. The first was approximately 3KB in size (3,228
bytes) and the second was approximately 1KB in size (1,158
bytes). For each test, a different number of messages was
inserted, starting at 1,000 and doubling each time to reach
a total of 256,000 messages. Each test was run 5 times and an
average taken to give the final time. Using this time and the
number of messages inserted, the total throughput of messages
per second was calculated.

A. 1KB document size

Based on the average value from each run, CakeDB
achieved a maximum throughput of 64,981 (Table I) inserts
per second, compared with MongoDB which achieved 7,664
(Table II), making CakeDB capable of approximately 8.5 times
the throughput of MongoDB.

TABLE I. TIME TAKEN TO INSERT 1KB DOCUMENTS INTO CAKEDB

Number of inserts 1,000 64,000 256,000
Average time taken (seconds) 0.02 1.11 4.60
Throughput (inserts per second) 64,981 57,726 55,592
STDEV 0.003 0.050 0.141

TABLE II. TIME TAKEN TO INSERT 1KB DOCUMENTS INTO
MONGODB

Number of inserts 1,000 64,000 256,000
Average time taken (seconds) 0.13 8.86 33.68
Throughput (inserts per second) 7,664 7,221 7,602
STDEV 0.002 0.636 1.205

B. 3KB Document Size

A fully populated Twitter message is around 3KB in size.
As a capture tool connected to a full Twitter feed (the Firehose
Streaming API) would need to handle this size of document,
a 3KB document test was set up to simulate a worst case
scenario. The tests were repeated as per the 1KB document
test. However the results were similar in scale despite the
change in size. CakeDB achieved a top throughput of 51,266
(Table III) and MongoDB of 4,391 (Table IV).

TABLE III. TIME TAKEN TO INSERT 3KB DOCUMENTS INTO CAKEDB

Number of inserts 1,000 64,000 256,000
Average time taken (seconds) 0.02 1.26 5.23
Throughput (inserts per second) 51,266 50,711 48,956
STDEV 0.003 0.018 0.173

TABLE IV. TIME TAKEN TO INSERT 3KB DOCUMENTS INTO
MONGODB

Number of inserts 1,000 64,000 256,000
Average time taken (seconds) 0.23 14.72 55.87
Throughput (inserts per second) 4,391 4,347 4,502
STDEV 0.011 0.442 0.512

Both databases dropped in throughput with the larger
message size. Although the message size was approximately
three times large, CakeDB lost 21.1% in throughput whereas
MongoDB lost 42.7%.

C. Pre-hashed JSON

The simulation remains as close to real world usage as
possible by requiring both databases and their drivers to handle
the incoming JSON data. For CakeDB this does not pose a
problem because its standard stream type is raw, that is, it
store data in the same format that it is received. This means it
does not need to process the JSON data into an intermediary
data format or do any processing on the message itself.

MongoDB however must convert the data to BSON, a bi-
nary based implementation of JSON. This first requires parsing
the JSON into Ruby’s native hash structure and from there
converting it to BSON data. JSON parsing would be required
in any application performing this task and so as a real world
test, it is fair to include this load during MongoDB’s tests.
The YAJL C library is used in these tests which is currently
considered to be one of the most efficient implementations
available. The Ruby MongoDB driver is also using the native
C BSON driver, so the use of Ruby is not unfairly affecting
the results.

However to determine whether the performance issues are
in the JSON library, an additional test was done where the data
was converted to a hash only once. This hash was then passed
to the MongoDB driver. This was repeated for both document
sizes and get the results in table V and VI for both the 1KB
and 3KB tests respectively.

TABLE V. TIME TAKEN TO INSERT 1KB DOCUMENTS INTO
MONGODB PRE-HASHED

Number of inserts 1,000 64,000 256,000
Average time taken (seconds) 0.08 4.79 19.12
Throughput (inserts per second) 12,046 13,360 13,387
STDEV 0.004 0.060 0.114

TABLE VI. TIME TAKEN TO INSERT 3KB DOCUMENTS INTO
MONGODB PRE-HASHED

Number of inserts 1,000 64,000 256,000
Average time taken (seconds) 0.11 6.54 25.36
Throughput (inserts per second) 9,257 9,784 10,095
STDEV 0.005 0.427 0.792

These tests demonstrate that a significant amount of the
time is being spent parsing the JSON to a Ruby hash. With
the 1KB documents, performance increased by approximately
38.4% and by 52.6% for the 3KB documents. This suggests
that as the complexity and size of the document increases,
the time required to parse it also increases. However despite
removing the JSON parsing from the test, CakeDB remained
5.4 times faster in the 1KB test and 5.5 times faster in the
3KB test.

D. Conclusions

The initial tests with both 1KB and 3KB documents
showed that CakeDB has better throughput for handling in-
serts. This is due to its low impact client, streaming inserts
and latched insert handling on the database itself. The results
demonstrate that a specialized database can out perform a
general purpose database and that CakeDB has significant
performance benefits over MongoDB. Additional tests showed
that even with pre-hashed datasets and using bulk inserts,
MongoDB was not able to approach the performance offered



by CakeDB. This suggests that the performance difference is
not simply due to external overhead (such as JSON parsing).

XIV. SUMMARY

Currently in industry there are numerous workloads that do
not lend themselves well to a ‘scale out’ approach. This paper
proposed a disk based approach for storing and then retrieving
sequential data. By using disk rather than RAM as the main
form of storage, this approach is able to store significantly
more data on a given machine.

XV. FUTURE DEVELOPMENTS

Currently CakeDB only supports simple time range based
queries. This works well for reporting, but limits its applica-
bility to more general use cases. To address this, support is
being added for BSON (Binary JSON) as used in MongoDB
along with a SQL like querying language. This will allow for
richer and more precise queries.

Although CakeDB did not initially focus on read perfor-
mance, in general usage, read performance was significantly
better than expected. Further research will be undertaken to
determine whether or not such an approach could yield similar
read performance to current systems (such as MongoDB) when
accessing sequentially stored data.

Including value as part of the definition for Big Data
raises questions as to how value can or should be defined.
It could be said that the value of data consists of both
intrinsic and extrinsic value. Further research will be conducted
to see whether pricing algorithms (such as those used in
pricing financial derivatives) could be used to provide a value
benchmark.
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