
Toward a Dynamic Trust Establishment Approach
for Multi-provider Intercloud Environment

Canh Ngo, Yuri Demchenko, Cees de Laat
University of Amsterdam, Netherlands

Email:{t.c.ngo,y.demchenko,delaat}@uva.nl

Abstract—In Cloud computing, the data are not only man-
aged by the data owner but also by Cloud providers. Sophis-
ticated Clouds collaboration scenarios require that thesedata
objects can be accessed distributively among Cloud providers,
while still being under the control of data owners. It brings
security challenges for distributed authorization and trust
management in which existing proposed schemes have not fully
solved. In this paper, we propose a Dynamic Trust Establish-
ment approach which can incorporate into Cloud provisioning
life-cycles for the multi-provider Intercloud environment. It
relies on attribute-based policies as the mechanism for trust
evaluation and delegation. The paper also presents a practical
implementation approach for attribute-based policies using
Multi-type Interval Decision Diagrams which has advantage
in term of evaluation complexity.

Keywords-Dynamic trust establishment; distributed autho-
rization; trust delegation; attribute-based policy.

I. I NTRODUCTION

Based on principles of Clouds suggested by NIST [1],
there’s a tendency that Cloud providers will cooperate to
bring composite Cloud services to customers. Such collabo-
ration between providers forms daisy-chain Cloud services,
in which providers in the chain leverage their services from
preceding one. The Fig. 1 can illustrate this scenario. In
this figure, an Infrastructure as a Service (IaaS) Cloud
provider can aggregate individual virtualized resources from
different Physical Providers to build up virtual infrastruc-
tures consisting of virtual computing nodes, virtual storages,
reserved network capacities, etc. The Platform as a Service
(PaaS) providers then may subscribe these infrastructures
to run their own platform development which offers ser-
vices to Software as a Service (SaaS) Providers. These
Cloud providers can collaborate in a daisy-chain to form
composited Cloud services distributed among Clouds to
end-users. Prospective development for Cloud Computing,
known as Intercloud as in [2], is that Cloud providers not
only leverage their Cloud services from others vertically,
but also can cooperate their Cloud services horizontally to
obtain reliability, scalability and cost efficiency.

In Fig. 1 with multiple Cloud providers, the end-user,
say Alice, has a business workflow that connect her sub-
scribed services from providersSaaS1 to a software system
running on a virtual infrastructure provided byIaaS1 and
another service fromSaaS2 and so on. The lowest layer

is the Physical Providers Layer, which consists of Physical
Infrastructure Providers (PIPs) who physically own physical
devices and offer virtualized primitive resources such as
storage, computing and network. It requires interconnections
between Cloud providers, even when they may not have
any direct relationships such as subscription contracts or
Service Level Agreements (SLAs): by vertically such as
PIP2 − IaaS1 − PaaS1 − SaaS1, or by horizontally such
asSaaS1− SaaS2, SaaS1 − IaaS1 − PaaS1, etc.

PIP� PIP� PIP�PIP�

IaaS� IaaS� IaaS�

PaaS� PaaS�

SaaS� SaaS�
���� ���	
���

����

���� ���	
���

����

���� ���	
���

����

����
���
���	
���
����

���������

����

SaaS�

PaaS�

Figure 1. An Intercloud scenario

This scenario brings security challenges in the aspect
of authorization and trust management. How a physical
provider, sayPIP2, allows Alice to access its data when
there’s no direct relationship between her, a stranger, and
thePIP2. There’s only have indirect relationships between
them through intermediate providers, e.g.SaaS2−PaaS1−
IaaS1 − PIP2. In the above workflow, services running
PaaS3 wants to access storage services provided byIaaS1

on behave of the owner Alice. The challenges here are how
to provide an effective, robust authorization mechanism in
which an entities endow another strange entities to access
its data in a distributed environment. Basic authorization
mechanisms do not fit this situation, when they require all
entities’ identifiers are known by authorizer. In a distributed,
open and dynamic environment with multiple administrative
domains, it is challenge for authorization based on users’

identities, since it requires a federated identity management
system accessible by corresponding Clouds.

This motivates the application of trust management for
authorization purpose in which the authorizer can decide per-
missions based on principle’s attributes that are distributed
at different locations and does not need principles’ iden-
tities. Moreover, the data/resource ownership transferable
property in the Clouds demands the distributed authorization
system using trust management should provide chain of
delegation in multiple levels. In this paper, we propose a
dynamic trust establishment with distributed authorization
in multi-provider Intercloud environment. The contributions
are as follows. First, our proposed scheme, based on the
basic attribute-based access control model (ABAC), presents
an attribute-based trust model approach proved by logic
formulas. The trust model is then applied to propose the
dynamic trust establishment mechanism which is the part
of a Dynamic Access Control Infrastructure for On-demand
provisioned Clouds [3]. After all, we propose a practical
implementation of the attribute-based trust by using Multi-
type Intervals Decision Diagrams which has substantial per-
formance comparing to other basic ABAC implementations.

The paper is organized as follows. Section II describes
the trust model for entities in the Intercloud. It also intro-
duces attribute-based trust policy concepts as mechanisms
for applying trust model to distributed authorization in
Intercloud. In section III, we incorporate the trust model
into Cloud provisioning life-cycles to provide dynamic trust
establishments among entities in the Intercloud. Section IV
presents adopted method to implement the attribute-based
policies evaluation in section II with Multi-types Interval
Decision Diagram. Section V describes the state of the art
of existing trust management mechanisms for distributed
authorization and identifies their limitations when applying
to architectures of Cloud echo system. Finally, section VI
summarizes work done and points out our future works in
trust management, as a part of a security infrastructure for
Clouds.

II. T RUST MODEL

This section analyzes trust model in the multi-provider
Intercloud environment, which includes entities, trust rela-
tionships and approaches to establish trust relationships.

A. Definitions

1) Entities: A sophisticated Cloud scenario may involve
number of different entities, which can be categorized into
one or several below types.

• Cloud providers and Cloud clients: When entities in
the Cloud eco-system can offer services to others, they
are called Cloud providers. The subscribers are called
Cloud clients. Some entities may have two roles, both
provider role and client role.

• End-users: End-users are the last endpoint in the chain
of Clouds. They can be employees using cloud services
of a company that subscribing IaaS from an IaaS Cloud
providers. Or they can be any individual users using
services from an Cloud providers.

• Physical Cloud providers: they are entities that hold
physical resources such as storage, computing, con-
nectivity, etc. By applying various virtualization tech-
nologies, they can split their physical resources and
platforms into slices of virtual resources, e.g. virtual
machines (VMs), cloud storage, virtual networks, etc.
These virtualized resources can be consumed by other
entities. In the chain of Cloud providers, Physical
Cloud providers stand at the beginning. This type of
Cloud providers can be seen as Amazon with EC2, S3
services.

• Intermediate Cloud providers: are providers who must
not own physical facilities, but by subscribing virtu-
alized resources from Physical Cloud providers, they
can build services on top these resources and offer
new products to customers. When the service is a com-
plete Cloud Infrastructure including storage, computing
and network connectivity, we call these providers as
IaaS Cloud providers. If services are development and
runtime environments for developers, these providers
are called PaaS Cloud providers. If services are soft-
ware applications then they are SaaS Cloud providers.
In practical, some Cloud providers may have sev-
eral roles, such as Google with Google Drive service
and Google Apps services; Microsoft with their own
physical facilities to provide Azure platform as PaaS
and Office365 application services as SaaS. A Cloud
image processing provider consuming stored images
at a storage providers can be seen as an intermediate
Cloud provider.

2) Trust: In the context of authorization for Clouds, we
define trust of an entity (trustor) to another entity (trustee) as
the belief of trustor on the trustee that the trustee can behave
reliably, dependably and securely in some specific contexts.
It can be seen that trust is the basis for authorization, an
entity only grant permission on another one only if it trusts
the other, not for everything, all the time, but on a specific
situation and limited time, or a specific context. For example,
entity A is an expert in finance, entity B who trusts A’s
capability, will take consideration from A’s comments on
finance issues, but may not listen to A’s ideas on other, such
as medical.

This example mentions an important feature, that is how
the trust is established. In the above example, we can assume
after seeing A’s certificates on finance, or A’s experience
history, B will trust A on finance area. In most abstraction,
the trustor trust the trustee on a specific context when the
trustee can show enough his attributes that satisfy trustor’s

criteria, and the trustor, by some mechanisms, makes sure
that these attributes are validated. This is the basic formation
of attribute-based trust establishment.

3) Trust relationships:The trust relationships in Cloud
Computing has following properties:

• Asymmetric: the relationship has direction, which is A
trusts B does not mean B trusts A.

• Contextual: the trust often specify on a particular
context. For example, A trusts B as a Cloud provider
providing network service, but not on storage service.

• Time-constraint: The trust should have limited lifetime.
In Cloud Computing, the lifetime of the trust between
Cloud providers and Cloud clients could be depend
on subscription contracts to provide services between
them.

We classify trust relationships into two following types,
depending on their lifetimes and how they are established:

• Direct Trust relationship: is the trust relationship be-
tween a Cloud provider and its direct clients. It is a
bilateral relationship in a long-term period which is
based on subscription contracts and usually is enforced
by SLAs.

• Indirect Trust relationship: is the trust relationship
between a Cloud provider and client through one or
several intermediate Cloud providers. This is a dy-
namic, ad-hoc trust relationship forming during service
consumption in a short time (compare to the lifetime
in SLAs). This relationship is often established based
on existing several direct trust relationships.

B. Trust Policies

In the previous section, we defines trusts and related
trust relationships. However, the model needs mechanisms to
decide the trust in different situations. In the multi-providers
of Intercloud environment, we propose to use attributes as
the primitive data to evaluate trust.

1) Basic trust policy: The trust between two entities
should have a specific semantic meaning, or trust context.
The trust statement between two entities is defined as: ”Alice
trusts Bob on contextX”. Alice is called the actor of trust,
Bob is the target of trust and the trust relationship is limited
by contextX .

When the context can be described by attributes, the trust
statement can be formulated as a set of logic conditions on
attributes which combined by Boolean operatorsand (∧),
or(∨), not(¬) and the contextX is defined as a vector
consisting ofn attributesX = (x1, x2...xn), each attribute
xi in the context has their domain valuesPi.

The trust statement is analogized as logic conditions
expression over the vector variableX and the actor of
context. We call it as the attribute-based trust policy:

factor(target,X) → trust (1)

In the trust policy (1),t is the target of the contextX ,
anda is the actor of the following trust statement: Theactor
trusts thetarget on contextX .

For example, Alice store her personal finance data in a
Cloud storage services provided byP1. She asks Bob, a
finance consultant, to analyze her finance status and give
advices. Thus, Alice grants Bob to read her finance data
in the P1. For simplification, we denote this contextX as
X∗ ≡ (dataAlice, read). The trust policy defined atP1 is:

fAlice(Bob, (dataAlice, read)) → trust

Now Bob wants to use a finance expert system provided
by a Cloud providerP2 in which he subscribes this service.
The outcome of this expert service then is analyzed by Bob’s
to produce report for his customer, Alice. The scenario here
becomes complicated when Bob should have permission to
allow services inP2 can access Alice’s data atP1. In other
words, Bob wants to delegate his permission toP2 system.
In next section, we define policies for such scenario.

2) Policies for delegation:The indirect trust relationship
in the model is based on the concept of conditional trust
transitivity. In this concept, entity C may trust A by an
indirect trust relationship when existing an intermediate
entity B, plays as the trust recommender. They need to
satisfy following conditions:

• The recommender B trusts A and recommends it to C
• The trustor C trusts B as the recommender.
• On receiving recommendation from B, C will count it

in the trust evaluation of A.

In attribute-based trust model, these conditions are de-
scribed as follows:

• B trusts A based on B’s policy on contextXA, then
B issues a recommendation in the form of a trust
credentialtcB.

• C asserts that B is a legit recommender for the trust
contextXB.

• With recommendationtcB and the contextXA, C uses
a recommendation policy to decide if it can trustA.

These conditions are described by following notations:

• Attribute issuing policy for B: it’s similar like trust
policy, but the result is an issued credential as the
approval of B for context X.

fB(A,XA) → tcXA

B (2)

in which tcXA

B is the recommendation of B on the
contextXA.

• Delegation policy for C: it defines set of targets which
are eligible as recommenders for contextX .

fD
C (X) → {targets} (3)

• C will evaluate the recommendation of B by using
below conditions:

fR
C (tcXA

B , XA) =

(B ∈ fD
C (XA)) ∧ valid(tcXA

B , XA) → trust (4)

The recommendationtcXrecommender is an attribute issued
by the recommender. It can be shown as a trust credential
exchanging between entities. The implementation of this
trust credential should guarantee the authenticity of the
recommender that issuing the attribute, and the integrity of
the trust context that it conveys. The functionvalid in the
above policy has the purpose to check the integrity of trust
certificate against the context. In the section III, we propose
a scheme that provides these properties.

Return with previous example, the attribute issuing policy
of Bob to grant permission forP2 to access Alice’s data on
behaving of him:

fBob(P2, X
∗) → tcX

∗

Bob

Alice has a delegation policy:

fD
Alice(X

∗) → {Bob}

The trust of Alice toP2 is setup when following condition
is fulfilled:

fC
Alice(tcBob, X

∗) :=

(Bob ∈ fD
Alice(X

∗)) ∧ valid(tcBob, X
∗) = true

3) Delegation trust chain:When Cloud resources are
composed from stack of Cloud providers, for example a
SaaS providerP1 subscribed PaaS fromP2. In turnP2 runs
on a virtual infrastructure provided by IaaS providerP3. In
this situation, providersP1, P2 andP3 need to use policies
for delegation to establish a trust between endpoints of the
chain.

In general, given a Cloud supply chain of providers
P1 → P2... → Pk where the providerPi subscribes Cloud
resources from providerPi−1 as in Fig. 2.

�� �� ���� ��...

Figure 2. Chain of Cloud providers

The trust chain fromP1 to Pk is done when delegations
are setup along the path, which is:

1
∧

i=k−1

(Pi+1 ∈ fD
Pi
(X)) ∧ validPi

(tcXPi+1
, X) = true (5)

III. D YNAMIC TRUST ESTABLISHMENT MECHANISM

FOR MULTI -LEVEL CLOUDS

This section will analyze challenges on building up a
trust establishment protocol for multi-provider Intercloud
environment. Our approach shows that it can be solved by
using attribute-based trust polices in section II in applying
to Cloud provisioning life-cycles.

A. Challenges

1) Distributed of policies and attributes:In practical of
Intercloud, trust policies are distributed and under controls
and configurations of different entities with their own secu-
rity domains. To evaluate the formula (5), we need to collect
decisions and attributes from these entities. We propose to
use the Pull and Push sequences as in [4] for distributed
policy evaluation. The Pull sequence is illustrated in the
section III-B. The remain Push sequence is then deduced
as well.

2) Local name spaces:Each Cloud provider has its
own name space, so understanding attribute-based context
crossing domains is a challenge. It’s obvious that with the
direct relationship, the Cloud client knows the direct Cloud
provider name space, because they have SLAs: the Cloud
client receives the Cloud provider’s resource ontology after
SLA negotiation, this ontology then is to describe a trust
contextX which is understandable by the provider.

To overcome this challenge, we suggest applying semantic
techniques to transform contexts between name spaces. We
assume that Cloud providers has their own ontologies to
describe their resources and attribute profiles, e.g. Infras-
tructure and Network Description Language (INDL) [5]
for virtual infrastructures provisioning. When Cloud clients
consume Cloud resources from a Cloud providerP , they
are provided the provider’s ontology, sayOP . When a
Cloud clientC1 plays as the intermediate Cloud provider
by offering its Cloud resources, it also has its ontology, say
OC1

. By default, a request contextX comes from end-user
U toC1 is described based on concepts ofOC1

. Due to some
Cloud computing operations requirements,P may need to
communicate directly withU . In this case,C1 needs to
provide a semantic inference engine that can infer concepts
between ontologiesOP and OC1

, used to transform the
request context of end-userU before sending toP . This
is an open research direction on the Cloud semantics which
its results can be applied into distributed authorization for
Intercloud.

3) Dynamic trusts relationships:Direct trust and indirect
trust relationships in the model are not static and cannot be
implemented using trusted certificate list (TAL) mechanisms
as in Public-key Infrastructures or PGP systems. These
two relationships has their lifetimes binding with Cloud re-
sources. The direct trust relationships with their trust anchors
are established in the Cloud services provisioning phase
and terminated at the end of Cloud services’ lifetimes. The

indirect trust relationships are formed during the operation
phase of the Cloud resources, when Cloud clients, through
daisy-chain of intermediate Cloud providers, want to access
the Cloud resources from the original Cloud providers.

We propose a dynamic trust establishment mechanism, in
which the direct trust relationships are provisioned during
Cloud resources provisioning which was the part of the
architecture in [3]. The indirect trust relationships are es-
tablished by the below distributed trust chain discovery by
using attribute-based trust policies for enforcement.

B. Dynamic Trust Establishments

The direct trust relationship between Cloud client and its
Cloud provider are setup during the deployment phase of
the Cloud security services provisioning life-cycles in [6].
The establishment workflow is described as below:

Context:

• A Cloud clientC wants to subscribe Cloud resources
from the Cloud providerP .

• P has a Trust Management repository for storing sub-
scribed client identifier (GRI) along with its related
security parameters: public key, policies (including trust
policies, delegation policies and recommendation-based
trust policies) that binds with GRI.

Implementation:

• In the reservation phase, Cloud clientC and Cloud
providerP exchange security parameters:

1) C generate a pair of its public keyPKC and
equivalent secret keySKC . The PK is then sent
to Cloud providerP .

2) Based on negotiated SLA,P creates a subscribed
resources description following its Cloud resource
ontology definition. It then generates attribute-
based policies in which the trust context is derived
from the subscribed resource description, e.g. in
the space of virtual infrastructure provisioning, it
can be done by using INDL [5].P also initializes
the delegation trust policy for the subscribed client
C. All these information is stored as a security
parameters forC, which is indexed by the GRI
value in the repository.

3) After the deployment phase, Cloud clientC holds
its secret keySKC , public key of the provider
PKP , the subscribed identifier GRI and descrip-
tion of subscribed resources. The Cloud provider
P holdsPKC , trust policies and delegation poli-
cies.

• In the operation phase, the trust relationships between
C and P are set up depending on resource requests
coming toP :

1) If a specific requestX comes directly from
the Cloud clientC, signed bySKC , the Cloud
providerP will validate its origin by thePKC

stored in the security parameter store and perform
evaluating its context against trust policies. If the
decision istrust, thenP allowsC to operate on
resource described inX . This is the direct trust
relationship fromC to P .

2) If a requestX comes from an external entity, say
E, recommended byC, the interaction between
these entities are illustrated in Fig. 3. In this case,
the indirect trust relationship betweenE andP is
established based on policies managed byC.

3) For a chain of Cloud providers, the Pull model
can be applied as in Fig. 4. In this figure, trust
contextsXi are transformed between Cloud name
spaces; the trust credentialtci denotes the recom-
mendation of the providerPi for the contextXi

to the successor provider.
• In the Decommissioning phase, related parameters and

policies binding to GRI ofC is released from the
repository, along with subscribed Cloud resources.

E C P

��� ! "#$�#%�& '(

)"�%� #*+,&

1),(1
X

C C
tcXEf →

��� ! -"+.�&
1X

C
tc

1,1
X

C
tcX

/0% 1,2�3 "#%2�"4#%

5#4266#.3+�72. #*+,&

trustXtcvalid

XfC
X
C

D
P

→

∧∈

),(

))((

1

1

1

Figure 3. Indirect Trust Establishment Protocol Flow

P8 P9 P:

;<=>?<

@ABCD

EFGBCE?F

H??FGG IJ KG @ABCDL M;N=>?NO

...C ;N=>?N

;P ;Q=>?Q ;NR<=>?NR<

;N=>?N ;N=>?N ;N=>?N

Figure 4. Indirect Trust Establishment Protocol Flow with Pull Model

C. Trust Credential Validation

As mentioned in section II, the trust credential
tcXRecommender should have authenticity of the recom-
mender, contextX integrity and limited lifetime. These
requirements can be implemented by using cryptographic
techniques as follows:

tcXRecommender := (issuer, sX , tX);

issuer := Recommender;

sX := sign(SK,H(X)|tX);

in whichH(X) is the one-way hash function of the trust
context andtX is the lifetime value of the recommendation.
SK is the secret key of the recommender in which its public
key is in security parameters store of the target provider. The
signature is to protect integrity of the context’s content and
validity of trust credential’s lifetime.

The implementation of the trust credential can utilize
SAML standard [7] by deriving the SAMLTrustStatement
from the SAML abstract statement.

<?xml version="1.0" encoding="UTF-8"?>
<saml:Assertion>
<saml:Issuer>trustAuthority-P1</saml:Issuer

>
<saml:Subject>
<saml:NameID>u1@companyC</saml:NameID>
<saml:SubjectConfirmation Method="

urn:oasis:names:tc:SAML:2.0:cm:sender-
vouches"/>

</saml:Subject>
<saml:Conditions>
<saml:AudienceRestriction>
<saml:Audience>IaaS-P2</saml:Audience>

</saml:AudienceRestriction>
</saml:Conditions>
<saml:TrustStatement TrustInstant="

2012-06-21T16:11:41.392Z"
SessionNotOnOrAfter="2012-06-24
T16:11:41.392Z">

<saml:TrustContext xmlns:indl="
urn:names:IaaS-P2:ontologies:indl">

<!-- trust context in XML format is
inserted or referred here-->

</saml:TrustContext>
<dsig:Signature xmlns="http://www.w3.org

/2000/09/xmldsig#">
<!-- a XML signature to protect trust-

context integrity-->
</dsig:Signature>

</saml:TrustStatement>
</saml:Assertion>

IV. ATTRIBUTE-BASED POLICIES IMPLEMENTATION

In this section, we present the Multi-type Interval Deci-
sion Diagram which are extended from the Interval Decision
Diagram in [8]. It represents a multi-variable logic function
as an acyclic, direct graph which is practical for implemen-
tation of attribute-based policy model in section II.

A. Multi-type Interval Decision Diagrams

The policies in section II can be seen as a multivalued
function with signature:

f : P1 × P2 . . .× Pn → R (6)

Let a data intervalI ⊂ Pi is a range of values in the
domainPi. Define a Boolean functionhxi

(I) as:

hxi
(I) =

{

0 if xi /∈ I
1 if xi ∈ I

Functionf in (6) is called independent with a variablexi

in the intervalI when:

∀x1
i , x

2
i ∈ I : fx1

i

= fx2
i

We denote this function asfxI

i

.
Set of intervalI(Pi) = {I1, I2, ..., IPi

} is called cover the
domain setPi of the variablexi when:

Pi =
⋃

I∈I(Pi)

I

The coverI(Pi) is disjoint if:

∀i, j ∈ [1, pi], i 6= j : Ii ∩ Ij = ∅

According to Boole-Shannon expansion, a functionf can
be decomposed to several partial functions in respect of
variablexi against a disjoint, covered partitionI(Pi)

f(X) =
∨

I∈I(Pi)

hxi
(I) ∧ fxI

i

(7)

Each partial functionfxI

i

which is independent with
variable xi, can also be decomposed in respect to other
variablexj . The decomposition continues until the function
is free from all variables. Then we can symbolize function
f as a decision diagramG(V,E) that:

• G is a rooted, directed acyclic graph with a node set
V having two types of nodes: terminal node and non-
terminal node.

• A terminal nodev ∈ V has the valuer ∈ R.
• A non-terminal nodev ∈ V is a variablexi ∈ Pi of the

function f in which its disjoint, covered data interval
partition isI(Pi) = {I1, I2, ..., IPi

}. Each intervalI ∈
I(Pi) is equivalent to an out going edgeeIv ∈ E from
the nodev.

• The sub graph of the outgoing edge of non-terminal
nodev ∈ V is a partial function described by Boole-
Shannon expansion in equation (7).

The formula (7) then can be represented as a decision
diagram in following figure:

xS

1I
ix

f
2I

ix
f

iPI
ix

f

iPI2I1I

...

f

Figure 5. Decision diagram illustration for logic functiondecomposition

An example of a decision diagram is shown in Fig. 6. It
represents following policy:

f(x1, x2, x3) =















































trust if((x1 ∈ {Bob, Carol}∧
(x2 = report1)∧
(x3 ∈ read, write))∨
((x1 = Dave)∧
((x2 = report2)∨
((x2 = report1)∧
(x3 = read))))

distrust otherwise

TUVWXYZ[\]^_Z`\ a^bcd

TUVWX_ceZ_fghd

_c^i\j_kfc

ic`cfc

XYZ[\]^_Z`d

3x

2x

1x

lceZ_fgh

2x

Xa^bcd

lceZ_fgm

TUVW

X_ceZ_fgh\ _ceZ_fgmd

3x

lceZ_fgh

_c^i

nopq

rstpr
ustpr

),,(321 xxxf

Figure 6. A Multi-type Interval Decision Diagram example

B. Authorization Complexity

In this section, we estimate the complexity of delegated
trust chain in (5).

Any attribute-based policy withn attributes in section II
can be transformed into a n-level MIDD described in 6. The
evaluation complexity of this policy isn · log(mP) with
m = max(Pi); ∀i ∈ [1, n], that is the maximal number of
intervals for all attributexi.

Given a set ofk multi-level Cloud providers which
form the supply chain for composite Cloud resources, the
complexity, the complexity of the delegation trust chain
establishment in (5) will bek · n · log(mP). In theory, this
complexity does not depend on number of policies but only
on number of attributes, the number of data intervals and
the length of delegation chain. However, practice shows that
increasing number of policies also affect the number of data
interval, because each policy often defines different intervals.

One drawback of the MIDD is the memory space, which
is depend on number of nodes in the diagram. A n-level
MIDD with on averagem edges of each node could cost

up to nm · sizeof(node) memory. However, the number
of nodes in MIDD depends heavily on whether the logical
function in (6) is optimized or not [8]. So it’s possible to
apply different implementation techniques in to mitigate this
problem by optimizing logical functions and usingunique
table implementation in [9].

V. RELATED WORK

The problem of trust management for authorization in
distributed, decentralized environment was initially inves-
tigated by Blaze et al. [10]. Subsequent work represented
Datalog trust policy languages by Li and Michell [11] and
then Role-based trust management language [12], in which
trust policies map subjects to roles based on attributes in
their credentials, then decisions were given from roles. Be-
cause of distributed properties of attributes in decentralized
environment, they developed a credential chain discovery
algorithm to retrieve and collect credentials. Such these algo-
rithms belonged to trust negotiation process aware of privacy
of sensitive attribute information such as automated trust
negotiation of Li et al. [13] or the Privacy-aware role-based
access control framework by Ni et al. [14]. These approaches
has some difficult applying to Intercloud when they do not
have efficient mechanisms to deal with local name spaces
issue. Our direction, in other hand, uses attributes as the
primitives for trust evaluation, which can be transformed
among Clouds by semantic techniques to transform attributes
between ontologies of local name spaces.

OAuth 2.0 authorization framework [15] enables a third-
party to access data by HTTP service on approval of the
data owner by an HTTP service. It provides workflow
protocol for distributed authorization that is currently applied
in various Cloud-based services such as Google API [16].
However, OAuth authorization framework does not mention
authorization evaluation mechanisms and how to dynami-
cally setup trust anchors for provisioned Cloud resources as
well as establishment trusts through chain of entities.

VI. CONCLUSION

In this paper, we have identified challenges of trust
management regarding distributed authorization for multi-
provider Intercloud environment. We then propose a formal
trust model that use attribute-based trust policies. The pro-
posed model is also applied in Cloud provisioning life-cycles
to provide the dynamic trust establishment mechanism.
Furthermore, we presents a practical implementation of the
attribute-based trust policies evaluation by using Multi-type
Intervals Decision Diagrams which has substantial perfor-
mance comparing to other basic ABAC implementations.

In future, for attribute resolutions among Clouds’ name
spaces, we plan to apply semantic techniques to transform
attributes ontologies from Cloud to Cloud. For integration
of proposed protocol to the Dynamic Access Control Infras-
tructure, we are developing the attribute-based trust policy

mechanisms engine using MIDD as the back-end, while
any attribute-base policy languages such as XACML [17]
can be used at front-end for administration. The dynamic
trust establishment protocol implementation should support
existing standards such as OAuth [16] and SAML [7] to
communicate between Cloud providers.

REFERENCES

[1] Hogan, M. D, Liu, F., Sokol, A. W., and Jin, T., “NIST-SP
500-291, NIST cloud computing standards roadmap,” NIST,
Tech. Rep. NIST SP 500-291, 2011.

[2] Y. Demchenko, C. Ngo, M. Makkes, R. Strijkers, and
C. de Laat, “Defining inter-cloud architecture for interop-
erability and integration,” inProceedings of the 3rd In-
ternational Conference on Cloud Computing, GRIDs, and
Virtualization, ser. CLOUD COMPUTING 2012. IARIA,
2012, pp. 174–180.

[3] C. Ngo, P. Membrey, Y. Demchenko, and C. de Laat,
“Security framework for virtualised infrastructure services
provisioned on-demand,” inCloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International
Conference on, 29 2011-dec. 1 2011, pp. 698 –704.

[4] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G.
Gross, B. de Bruijn, C. de Laat, M. Holdrege, and D.
Spence, “RFC 2904 - AAA authorization framework,”
Tech. Rep. RFC 2094, aug 2000. [Online]. Available:
http://tools.ietf.org/html/rfc2904

[5] M. Ghijsen, J. van der Ham, P. Grosso, and C. de Laat,
“Towards an infrastructure description language for model-
ing computing infrastructures,” inParallel and Distributed
Processing with Applications (ISPA), 2012 IEEE 10th Inter-
national Symposium on, july 2012.

[6] Y. Demchenko, C. Ngo, C. de Laat, T. Wlodarczyk, C. Rong,
and W. Ziegler, “Security infrastructure for on-demand pro-
visioned cloud infrastructure services,” inCloud Computing
Technology and Science (CloudCom), 2011 IEEE Third Inter-
national Conference on, 29 2011-dec. 1 2011, pp. 255 –263.

[7] “Assertions and protocols for the OASIS security assertion
markup language (SAML) v2.0, OASIS standard,” OASIS,
SAML, Mar. 2005. [Online]. Available: http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[8] K. Strehl and L. Thiele, “Interval diagrams for efficient
symbolic verification of process networks,”Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 19, no. 8, pp. 939 –956, aug 2000.

[9] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
implementation of a bdd package,” inProceedings of the
27th ACM/IEEE Design Automation Conference, ser. DAC
’90. New York, NY, USA: ACM, 1990, pp. 40–45. [Online].
Available: http://doi.acm.org/10.1145/123186.123222

[10] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust
management,” inIn Proceedings of the 1996 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press,
1996, pp. 164–173.

[11] N. Li and J. C. Mitchell, “Datalog with constraints: A
foundation for trust management languages,” inProceedings
of the 5th International Symposium on Practical Aspects
of Declarative Languages, ser. PADL ’03. London, UK,
UK: Springer-Verlag, 2003, pp. 58–73. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645773.667961

[12] N. Li, J. C. Mitchell, and W. H. Winsborough,
“Design of a role-based trust-management framework,”
in Proceedings of the 2002 IEEE Symposium on Security
and Privacy, ser. SP ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 114–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=829514.830539

[13] J. Li, N. Li, and W. H. Winsborough, “Automated
trust negotiation using cryptographic credentials,” in
Proceedings of the 12th ACM conference on Computer
and communications security, ser. CCS ’05. New York,
NY, USA: ACM, 2005, pp. 46–57. [Online]. Available:
http://doi.acm.org/10.1145/1102120.1102129

[14] Q. Ni, A. Trombetta, E. Bertino, and J. Lobo, “Privacy-
aware role based access control,” inProceedings of
the 12th ACM symposium on Access control models
and technologies, ser. SACMAT ’07. New York, NY,
USA: ACM, 2007, pp. 41–50. [Online]. Available:
http://doi.acm.org/10.1145/1266840.1266848

[15] E. D. Hardt and D. Recordon, “The oauth 2.0 authorization
framework, draft-ietf-oauth-v2-30,” Tech. Rep., July 2012.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-oauth-
v2

[16] Using OAuth 2.0 to Access Google APIs. [Online]. Available:
https://developers.google.com/accounts/docs/OAuth2

[17] OASIS, “XACML v3.0: Core specification,” OASIS, Tech.
Rep., Aug. 2010. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

