Building the Data Science Profession in Europe

Yuri Demchenko
23 October 2016

EDISON
building the data science profession

Grant 675419 (INFRASUPP-4-2015: CSA)
Outline

• Background and motivation
 – Demand for Data Science and European initiatives related to Digital Single Market and Digital Skills

• EDISON Data Science Framework (EDSF)
 – From Data Science Competences to Body of Knowledge and Model Curriculum

• **Data Science Competence Framework**: Essential competences and skills

• Data Science Professional profiles and taxonomy

• Educational and training focus
 – Data Science Body of Knowledge (DS-BoK)
 – Data Science Model Curriculum (MC-DS)

• Further developments to formalise EDSF and Data Science profession establishment

• Discussion and Invitation to cooperation

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
EDISON Framework components

- CF-DS – Data Science Competence Framework
- DS-BoK – Data Science Body of Knowledge
- MC-DS – Data Science Model Curriculum
- DSP - Data Science Professional profiles definition
- Data Science Taxonomies and Scientific Disciplines Classification
EDISON Data Science Framework (EDSF) Release 1 (Oct 2016)

EDISON Framework components

- CF-DS – Data Science Competence Framework
- DS-BoK – Data Science Body of Knowledge
- MC-DS – Data Science Model Curriculum
- DSP - Data Science Professional profiles definition
- Data Science Taxonomies and Scientific Disciplines Classification
Background Frameworks and Standards

e-CFv3.0 - European e-Competence Framework for IT
- Structured by 4 Dimensions and organizational processes
 - Competence Areas: Plan – Build – Run – Enable - Manage
 - Competences: total defined 40 competences
 - Proficiency levels: identified 5 levels linked to professional education levels
 - Skills and Knowledge

CWA 16458 (2012): European ICT Professional Profiles Family Tree
- Defines 23 ICT profiles for common ICT jobs

ESCO (European Skills, Competences, Qualifications and Occupations)
- Standard for European job market since 2016
- Expected inclusion of the Data Science occupations family – mid 2017

ACM Classification of Computer Science – CCS (2012)
- ACM Computer Science Body of Knowledge (CS-BoK) and ACM and IEEE Computer Science Curricula 2013 (CS2013)
EDISON Data Science Competence Framework

- How it was made
- 5 main Data Science competences groups
- Skills, tools and languages
- Practical use of the CF-DS
- Data Science Professional profiles and occupations family
Demanded Data Science Competences and Skills: Jobs market analysis and stakeholders

Initial Analysis (period Aug – Sept 2015) -> Continuous monitoring (in development)

– IEEE Data Science Jobs (World but majority US)
 • Collected > 120, selected for analysis > 30, verified with 100s job ads

– LinkedIn Data Science Jobs (NL)
 • Collected > 140, selected for analysis > 30, verified with 100s job ads

– Existing studies and reports + numerous blogs & forums

Analysis methods

– Data analytics methods: classification, clustering, expert evaluation
– Research methods: Data collection - Hypothesis – Artefact - Evaluation
Based on the definition by NIST Big Data WG (NIST SP1500 - 2015)

A Data Scientist is a practitioner who has sufficient knowledge in the overlapping regimes of expertise in business needs, domain knowledge, analytical skills, and programming and systems engineering expertise to manage the end-to-end scientific method process through each stage in the big data lifecycle – …Till the delivery of expected scientific and business value to science or industry

Other definitions to admit such features as
– Ability to solve variety of business problems, tell “stories”, input to decision making
– Optimize performance and suggest new services for the organisation
– Develop a special mindset and be statistically minded, understand raw data and “appreciate data as a first class product”

• Data science is the empirical synthesis of actionable knowledge and technologies required to handle data from raw data through the complete data lifecycle process.
• Big Data is the technology to build system and infrastructures to process large volume of structurally complex data in a time effective way
Commonly accepted Data Science competences/skills groups include
- Data Analytics or Business Analytics or Machine Learning
- Engineering or Programming
- Subject/Scientific Domain Knowledge

EDISON identified 2 additional competence groups demanded by organisations
- Data Management, Curation, Preservation
- Scientific or Research Methods and vs Business Processes/Operations

Other skills commonly recognized aka “soft skills” or “social/professional intelligence”
- Inter-personal skills or team work, cooperativeness

Important aspects of integrating Data Scientist into organisation structure
- General Data Science (and Data) literacy for all involved roles and management
- Common agreed and understandable way of communication and information/data presentation
- **Role of Data Scientist: Provide a kind of literacy advice and guidance to organisation**
Data Science Competence Groups - Research

Data Science Competence includes 5 areas/groups
- Data Analytics
- Data Science Engineering
- Domain Expertise
- Data Management
- Scientific Methods (or Business Process Management)

Scientific Methods
- Design Experiment
- Collect Data
- Analyse Data
- Identify Patterns
- Hypothesise Explanation
- Test Hypothesis
Data Science Competence Groups - Business

Data Science Competence includes 5 areas/groups
- Data Analytics
- Data Science Engineering
- Domain Expertise
- Data Management
- Scientific Methods (or Business Process Management)

Business Process Operations/Stages
- Design
- Model/Plan
- Deploy & Execute
- Monitor & Control
- Optimise & Re-design
<table>
<thead>
<tr>
<th>Data Science Analytics (DSDA)</th>
<th>Data Management (DSDM)</th>
<th>Data Science Engineering (DSENG)</th>
<th>Research/Scientific Methods (DSRM)</th>
<th>Data Science Domain Knowledge, e.g. Business Processes (DSDK/DSBPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use appropriate statistical techniques and predictive analytics on available data to deliver insights and discover new relations</td>
<td>Develop and implement data management strategy for data collection, storage, preservation, and availability for further processing.</td>
<td>Use engineering principles to research, design, develop and implement new instruments and applications for data collection, analysis and management</td>
<td>Create new understandings and capabilities by using the scientific method (hypothesis, test/artefact, evaluation) or similar engineering methods to discover new approaches to create new knowledge and achieve research or organisational goals</td>
<td>Use domain knowledge (scientific or business) to develop relevant data analytics applications, and adopt general Data Science methods to domain specific data types and presentations, data and process models, organisational roles and relations</td>
</tr>
<tr>
<td>DSDA01 Use predictive analytics to analyse big data and discover new relations</td>
<td>DSDM01 Develop and implement data strategy, in particular, Data Management Plan (DMP)</td>
<td>DSENG01 Use engineering principles to design, prototype data analytics applications, or develop instruments, systems</td>
<td>DSRM01 Create new understandings and capabilities by using scientific/research methods or similar domain related development methods</td>
<td>DSBPM01 Understand business and provide insight, translate unstructured business problems into an abstract mathematical framework</td>
</tr>
<tr>
<td>DSDA02 Use statistical technique to deliver insights</td>
<td>DSDM02 Develop data models including metadata</td>
<td>DSENG02 Develop and apply computational solutions</td>
<td>DSRM02 Direct systematic study toward a fuller knowledge or understanding of the observable facts</td>
<td>DSBPM02 Participate strategically and tactically in financial decisions</td>
</tr>
<tr>
<td>DSDA03 Develop specialized ...</td>
<td>DSDM03 Collect integrated data</td>
<td>DSENG03 Develops specialized tools</td>
<td>DSRM03 Undertakes creative work</td>
<td>DSBPM03 Provides support services to other</td>
</tr>
<tr>
<td>DSDA04 Analyze complex data</td>
<td>DSDM04 Maintain repository</td>
<td>DSENG04 Design, build, operate</td>
<td>DSRM04 Translate strategies into actions</td>
<td>DSBPM04 Analyse data for marketing</td>
</tr>
<tr>
<td>DSDA05 Use different analytics</td>
<td>DSDM05 Visualise complex data</td>
<td>DSENG05 Secure and reliable data</td>
<td>DSRM05 Contribute to organisational goals</td>
<td>DSBPM05 Analyse optimise customer relations</td>
</tr>
</tbody>
</table>
Identified Data Science Skills/Experience Groups

Group 1: Skills/experience related to competences
- Data Analytics and Machine Learning
- Data Management/Curation (both general and scientific)
- Data Science Engineering (hardware and software) skills
- Scientific/Research Methods or Business Process Management
- Application/subject domain related (research or business)
- Mathematics and Statistics

Group 2: Big Data (Data Science) tools and platforms
- Big Data Analytics platforms
- Mathematics & Statistics applications & tools
- Databases (SQL and NoSQL)
- Data Management and Curation platform
- Data and applications visualisation
- *Cloud based platforms and tools*

Group 3: Programming and programming languages and IDE
- General and specialized development platforms for data analysis and statistics

Group 4: Soft skills or Social Intelligence
- Personal, inter-personal communication, team work, professional network
Practical Application of the CF-DS

Basis for the definition of the Data Science Body of Knowledge (DS-BoK) and Data Science Model Curriculum (MC-DS)
- CF-DS => Learning Outcomes (MC-DS) => Knowledge Areas (DS-BoK)
- CF-DS => Data Science taxonomy of scientific subjects and vocabulary

Data Science Professional profiles definition
- Extend existing EU standards and occupations taxonomies: e-CFv3.0, ESCO, others

Professional competence benchmarking
- For customizable training and career development
- Including CV or organisational profiles matching

Professional certification
- In combination with DS-BoK professional competences benchmarking

Vacancy construction tool for job advertisement (for HR)
- Using controlled vocabulary and Data Science Taxonomy
Example competence benchmark result

Red polygon indicates the chosen professional profile

Yellow polygon indicates the practitioner competences/skills

Insufficient competences are shown in a bold typeface

[ref] Kim Hee et al (Frankfurt Univ) “Tailored Data Science Education using Gamification” - DTW2016 Workshop EDISON research paper
Professional profiles groups are defined in compliance with the ESCO taxonomy.

Managers: Chief Data Officer (CDO), Data Science (group/dept) manager, Data Science infrastructure manager, Research Infrastructure manager

Professionals: Data Scientist, Data Science Researcher, Data Science Architect, Data Science (applications) programmer/engineer, Data Analyst, Business Analyst, etc.

Professionals (database): Large scale (cloud) database designers and administrators, scientific database designers and administrators

Professionals and associated support (data handling/management): Data Stewards, Digital Data Curator, Digital Librarians, Data Archivists, Support and data entry workers

Technicians and associate professionals: Big Data facilities operators, scientific database/infrastructure operators
Data Science Occupations: Extension for the ESCO (2016) (1)

<table>
<thead>
<tr>
<th>Professionals</th>
<th>Data Science Occupations</th>
<th>Data Science professionals not elsewhere classified</th>
<th>DSP#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science and engineering professionals</td>
<td>Data Science Professionals</td>
<td>Data Science professionals not elsewhere classified</td>
<td>DSP04 Data Scientist</td>
</tr>
<tr>
<td></td>
<td>Database and network professionals</td>
<td>Large scale (cloud) data storage designers and administrators</td>
<td>DSP03 Data Science Researcher</td>
</tr>
<tr>
<td></td>
<td>Database designers and administrators</td>
<td>Large scale (cloud) database administrator*</td>
<td>DSP02 Large scale (cloud) database administrator*</td>
</tr>
<tr>
<td></td>
<td>Database and network professionals not elsewhere classified</td>
<td>Data handling professionals not elsewhere classified</td>
<td>DSP12 Digital Librarian</td>
</tr>
<tr>
<td>Information and communications technology professionals</td>
<td>Data Science technology professionals</td>
<td>Data handling professionals not elsewhere classified</td>
<td>DSP13 Data Archivist</td>
</tr>
<tr>
<td></td>
<td>Database designers and administrators</td>
<td>Database administrators</td>
<td>DSP14 Data Steward</td>
</tr>
<tr>
<td></td>
<td>Database and network professionals not elsewhere classified</td>
<td>Data handling professionals not elsewhere classified</td>
<td>DSP11 Data curator</td>
</tr>
</tbody>
</table>

22 DSP# Enumerated Data Science and Data related profiles defined by EDISON Framework
Data Science Occupations: Extension for the ESCO (2016) (2)

Technicians and associate professionals

<table>
<thead>
<tr>
<th>Science and engineering associate professionals</th>
<th>Data Science Technology Professionals</th>
<th>Data Infrastructure engineers and technicians</th>
<th>DSP17 Big Data facilities Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSP18 Large scale (cloud) data storage operators</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Database and network professionals not elsewhere classified</td>
<td>DSP19 Scientific database operator*</td>
</tr>
</tbody>
</table>

Managers

<table>
<thead>
<tr>
<th>Production and specialised services managers</th>
<th>Data Science/Big Data Infrastructure Managers</th>
<th>DSP01/DSP02 Data Science/Big Data Infrastructure Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DSP03 Research Infrastructure Managers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSP03 RI Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSP03 RI Data storage facilities manager</td>
</tr>
</tbody>
</table>

Clerical support workers

<table>
<thead>
<tr>
<th>General and keyboard clerks</th>
<th>Data handling support workers (alternative)</th>
<th>Data and information entry and access</th>
<th>Digital Archivists and Librarians</th>
<th>DSP20 Data entry/access desk/terminal workers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSP21 Data entry field workers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DSP22 User support data services</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Mapping CF-DS groups to the DSP profiles

Relevance of a competence to a DSP profile:

5 – high, 1 - low

<table>
<thead>
<tr>
<th>Profile ID</th>
<th>Data Science Profile title</th>
<th>DSDA</th>
<th>DSDM</th>
<th>DSENG</th>
<th>DSRM</th>
<th>DSDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP01</td>
<td>Data Science (group) Manager</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>DSP02</td>
<td>Data Science Infrastructure Manager</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DSP03</td>
<td>Research Infrastructure Manager</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>DSP04</td>
<td>Data Scientist</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>DSP05</td>
<td>Data Science Researcher</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>DSP06</td>
<td>Data Science Architect</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DSP07</td>
<td>Data Science Applications Programmer/Engineer</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>DSP08</td>
<td>Data Analyst</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>DSP09</td>
<td>Business Analyst</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>DSP10</td>
<td>Data Stewards</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DSP11</td>
<td>Digital data curator</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>DSP12</td>
<td>Digital Librarians</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>DSP13</td>
<td>Data Archivists</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>DSP14</td>
<td>Large scale (cloud) database designer</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DSP15</td>
<td>Large scale (cloud) database administrator</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>DSP16</td>
<td>Scientific database administrator</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>DSP17</td>
<td>Big Data facilities Operator</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>DSP18</td>
<td>Large scale (cloud) data storage operator</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DSP19</td>
<td>Scientific database operator</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>DSP20</td>
<td>Data entry/access worker</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DSP21</td>
<td>Data entry field workers</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DSP22</td>
<td>User support data services</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Data Science or Data Management Group/Department: Organisational structure and staffing - EXAMPLE

Data Science or Data Management Group/Department

- Group Manager
- Data Science Architect
- Data Analyst
- Data Science Application programmer
- Data Infrastructure/facilities administrator/operator: storage, cloud, computation
- Data stewards

>> Reporting to CDO/CTO/CEO
• Providing cross-organizational services
Data Science or Data Management Group/Department: Organisational structure and staffing - EXAMPLE

Data Science or Data Management Group/Department

– (Managing) Data Science Architect (1)
– Data Scientist (1), Data Analyst (1)
– Data Science Application programmer (2)
– Data Infrastructure/facilities administrator/operator: storage, cloud, computing (1)
– Data stewards, curators, archivists (3-5)

>> Reporting to CDO/CTO/CEO
 • Providing cross-organizational services

Estimated: Group of 10-12 data specialists for research institution of 200-300 research staff.
EXAMPLE: IBM emerging professions

Mastering the art of data science: How to craft cohesive teams that create business results, IBM Institute for Business Value, 2016
– Create data science teams with varied backgrounds and skills
Education and Training

Foundation and methodological base
– Data Science Body of Knowledge (DS-BoK)
 • Taxonomy and classification of Data Science related scientific subjects
– Data Science Model Curriculum (MC-DS)
 • Set Learning Units mapped to CF-DS Learning and DS-BoK Knowledge Areas/Units
– Instructional methodologies and teaching models

Platforms and environment
– Virtual labs, datasets, developments platforms
– Online education environment and courses management

Services
– Individual benchmarking and profiling tools (competence assessment)
– Knowledge evaluation tools
– Certifications and training
– Education and training marketplace: Courses catalog and repository
Data Science Body of Knowledge (DS-BoK)

DS-BoK Knowledge Area Groups (KAG)

KAG1-DSA: Data Analytics group including Machine Learning, statistical methods, and Business Analytics

KAG2-DSE: Data Science Engineering group including Software and infrastructure engineering

KAG3-DSDM: Data Management group including data curation, preservation and data infrastructure

KAG4-DSRM: Scientific/Research Methods group

KAG5-DSBP: Business process management group

Data Science domain knowledge to be defined by related expert groups
Data Science Model Curriculum (MC-DS)

Data Science Model Curriculum includes

– Learning Outcomes (LO) definition based on CF-DS
 • LOs are defined for CF-DS competence groups and for all enumerated competences

– LOs mapping to Learning Units (LU)
 • LUs are based on CCS(2012) and universities best practices
 • Data Science university programmes and courses inventory (interactive)
 http://edison-project.eu/university-programs-list

– LU/course relevance: Mandatory Tier 1, Tier 2, Elective, Prerequisite

– Learning methods and learning models (in progress)
 • Based on Bloom’s Taxonomy, Outcome Based Learning, etc
Example DS-BoK Knowledge Areas definition and mapping to existing BoKs and CCS (2012)

<table>
<thead>
<tr>
<th>Knowledge Area Groups (KAG)</th>
<th>Knowledge Areas (KA)</th>
<th>Suggested Knowledge Units (KU)</th>
<th>Mapping to CCS2012 (including suggested Data Science extensions) and existing BoKs</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAG1-DSDA: Data Analytics</td>
<td>Theory of computation</td>
<td>Design and Analysis of Algorithms</td>
<td>DM-BoK selected KAs</td>
</tr>
<tr>
<td>group (including Machine</td>
<td>Machine Learning Theory</td>
<td></td>
<td>(1) Data Governance,</td>
</tr>
<tr>
<td>Learning, statistical</td>
<td></td>
<td></td>
<td>(2) Data Architecture,</td>
</tr>
<tr>
<td>methods)</td>
<td></td>
<td></td>
<td>(3) Data Modelling and Design,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) Data Storage and Operations,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) Data Security,</td>
</tr>
<tr>
<td>KAG2-DSENG: Data Science</td>
<td>Computer systems organisation for Big Data</td>
<td>Parallel and Distributed Computer Architecture</td>
<td>(6) Data Integration and Interoperability,</td>
</tr>
<tr>
<td>Engineering group</td>
<td></td>
<td></td>
<td>(7) Documents and Content,</td>
</tr>
<tr>
<td>including Software an</td>
<td>Computer networks, architecture</td>
<td></td>
<td>(8) Reference and Master Data,</td>
</tr>
<tr>
<td>infrastructure engineering</td>
<td></td>
<td></td>
<td>(9) Data Warehousing and Business Intelligence,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) Metadata, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) Data Quality.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example MC-DS Mapping Learning Units to DS-BoK and CCS (2012)

<table>
<thead>
<tr>
<th>KAG/LU#</th>
<th>Learning Unit (course name)</th>
<th>Type/relevance</th>
<th>Map to DS-BoK, CCS2012 and known BoKs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tier 1 Tier 2 Elective Pre requisite</td>
<td>CCS2012 based academic subjects</td>
</tr>
<tr>
<td>Software requirements and design</td>
<td></td>
<td></td>
<td>Extensions are suggested from SWEBOK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning Unit (course name)</th>
<th>Type/relevance</th>
<th>Map to DS-BoK, CCS2012 and known BoKs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information theory</td>
<td></td>
<td>Mathematical analysis</td>
</tr>
<tr>
<td>Mathematical analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensibility point for adding new courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td></td>
<td>Computing methodologies</td>
</tr>
<tr>
<td>Natural Language Processing</td>
<td></td>
<td>Artificial intelligence</td>
</tr>
<tr>
<td>Knowledge Representation and Reasoning</td>
<td></td>
<td>Natural language processing</td>
</tr>
<tr>
<td>Data mining and knowledge discovery</td>
<td></td>
<td>Knowledge representation and reasoning</td>
</tr>
<tr>
<td>Text analysis, Data mining</td>
<td></td>
<td>Search methodologies</td>
</tr>
<tr>
<td>Text analytics including statistical, linguistic, and structural techniques to analyse structured and unstructured data</td>
<td></td>
<td>Machine learning</td>
</tr>
<tr>
<td>Machine Learning theory and algorithms</td>
<td></td>
<td>Learning paradigms</td>
</tr>
<tr>
<td>Classification methods</td>
<td></td>
<td>Supervised learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unsupervised learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinforcement learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-task learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine learning approaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine learning algorithms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No specific BoK are defined

Engineering process models and tools continuous improvement defined
Further Developments and Actions

- Run surveys and key interviews for target communities
 - Primarily experts, visionaries and top executives at universities and companies
- Work with champion universities to practically validate the proposed EDSF
- Run a serial of the Champion Universities conferences: Spring 2017 and Summer 2017
 - Extend scope to Champions, Adopters, Ambassadors and Professionals
- Involve academic and industry experts and professional organisations to the definition of DS-BoK following from CF-DS
- Formally provide suggestions to ESCO for the definition of the Data Science professional profiles (occupations) family
- Formally provide suggestions for e-CF3.0 extensions for Data Science to CEN/PC 428
 - Involve national e-CF bodies and adopters where available
- Suggest required ACM CCS(2012) Classification extensions and proposal for Data Science curriculum definition
Questions & Comments

Invitation to contribution and cooperation:
– Forum, EDISON Liaisons Groups, Champions Conference (Spring & Summer 2017)

EDISON project website http://edison-project.eu/

EDISON Data Science Framework Release 1 (EDSF)
http://edison-project.eu/edison-data-science-framework-edsf

Survey Data Science Competences: Invitation to participate
https://www.surveymonkey.com/r/EDISON_project_-_Defining_Data_science_profession

Discussion

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Links to EDSF and other EDISON resources

EDISON project website http://edison-project.eu/

EDISON Data Science Framework Release 1 (EDSF)
http://edison-project.eu/edison-data-science-framework-edsf

– Data Science Competence Framework
 http://edison-project.eu/data-science-competence-framework-cf-ds

– Data Science Body of Knowledge
 http://edison-project.eu/data-science-body-knowledge-ds-bok

– Data Science Model Curriculum
 http://edison-project.eu/data-science-model-curriculum-mc-ds

– Data Science Professional Profiles
 http://edison-project.eu/data-science-professional-profiles-definition-dsp

Survey Data Science Competences: Invitation to participate
https://www.surveymonkey.com/r/EDISON_project_-_Defining_Data_science_profession
Definitions (according to e-CFv3.0)

Competence is a demonstrated ability to apply knowledge, skills and attitudes for achieving observable results.

- Competence vs Competency (e-CF vs ACM)
 - Competence is ability acquired by training or education (linked to learning outcome)
 - Competency is similar to skills or experience (acquired feature of a person)

Competence is not to be confused with process or technology concepts such as, ‘Cloud Computing’ or ‘Big Data’. These descriptions represent evolving technologies and in the context of the e-CF, they may be integrated as elements within knowledge and skill examples.

Knowledge in the context of competence definition is treated as something to know, to be aware of, familiar with, and obtained as a part of education.

Skills is treated as provable ability to do something and relies on the person’s experience.
Subject domain components
- Model (and data types)
- Methods
- Processes
- Domain specific data and presentation/visualization methods
- Organisational roles and relations

Data Scientist is an assistant to Subject Domain Specialists
- Translate subject domain Model, Methods, Processes into abstract data driven form
- Implement computational models in software, build required infrastructure and tools
- Do (computational) analytic work and present it in a form understandable to subject domain
- Discover new relations originated from data analysis and advice subject domain specialist
- Present/visualise information in domain related actionable way
- Interact and cooperate with different organizational roles to obtain data and deliver results and/or actionable data
Data Scientist role is to maintain the Data Value Chain (domain specific):

Data Integration =>
Organisation/Process/Business Optimisation => **Innovation**

Data Science and Subject Domains

Data Science domain components

- Data structures & databases/storage
- Visualisation
- Abstract data driven math&compute models
- Data Analytics methods
- Data and Applications Lifecycle Management

Domain specific components

- Domain specific data & presentation (visualization)
- Models (and data types)
- Methods
- Processes

Organisational roles

Cross-organisational assistive role

Data Scientist functions is to translate between two domains
KAG3-DSDM: *Data Management group: data curation, preservation and data infrastructure*

DM-BoK version 2 “Guide for performing data management”
– 11 Knowledge Areas

(1) Data Governance
(2) Data Architecture
(3) Data Modelling and Design
(4) Data Storage and Operations
(5) **Data Security**
(6) Data Integration and Interoperability
(7) **Documents and Content**
(8) Reference and Master Data
(9) Data Warehousing and Business Intelligence
(10) **Metadata**
(11) Data Quality

Other Knowledge Areas motivated by RDA, European Open Data initiatives, European Open Data Cloud

(12) PID, metadata, data registries
(13) Data Management Plan
(14) Open Science, Open Data, Open Access, ORCID
(15) Responsible data use

• Highlighted in red: Considered (Research) Data Management literacy (minimum required knowledge)
A. Use cases for data management and stewardship
 – Preserving the Scientific Record

B. Data Management elements (organisational and individual)
 – Goals and motivation for managing your data
 – Data formats
 – Creating documentation and metadata, metadata for discovery
 – Using data portals and metadata registries
 – Tracking Data Usage
 – Handling sensitive data
 – Backing up your data
 – Data Management Plan (DMP) - to be a part of hands on session

C. Responsible Data Use Section (Citation, Copyright, Data Restrictions)

D. Open Science and Open Data (Definition, Standards, Open Data use and reuse, open government data)
 – Research data and open access
 – Repository and self-archiving services
 – ORCID identifier for data
 – Stakeholders and roles: engineer, librarian, researcher
 – Open Data services: ORCID.org, Altmetric Doughnut, Zenodo

E. Hands on:
 a) Data Management Plan design
 b) Metadata and tools
 c) Selection of licenses for open data and contents (e.g. Creative Common and Open Database)

Collaboration with the Research Data Alliance (RDA) on developing model curriculum on Research Data Literacy:
- Modular, Customisable, Localised, Open Access
- Supported by the network of trainers via resource swap board
Demand for Data Science and data related professions

European initiatives and directives
– Launch Digital Skills and Jobs Coalition (1st December 2016, Brussels) to develop comprehensive national digital skills strategies by mid-2017

HLEG report on European Open Science Cloud (Oct. 2016) identified need for data experts and data stewards
– Estimation: More than 80,000 data stewards (1 per every 20 scientists)
– Core data experts need to be trained and their career perspective improved

OECD on Skills for a Digital World (25 May 2016)
– Demand for new type of “dynamic self-re-skilling workforce”
Demand for Data Science and data related professions

McKinsey Global Institute on Big Data Jobs (2011)
– Estimated gap of 140,000 - 190,000 data analytics skills by 2018

UK Big Data skills report 2014
– 6400 UK organisations with 100+ staff will have implemented Big Data Analytics by 2020
– Increase of Big Data jobs from 21,400 (2013) to 56,000 (2017)

– Number of data workers 6.1 mln (2014) - increase 5.7% from 2013
– Average number of data workers per company 9.5 - increase 4.4%
– Gap between demand and supply 509,000 (2014) or 7.5%

HLEG report on European Open Science Cloud (2016) identified need for data experts and data stewards
– Recommendation: Allocate 5% grant funding for Data management and preservation
– Estimation: More than 80,000 data stewards (1 per every 20 scientists)
– Core data experts need to be trained and their career perspective improved
Recent European Commission Initiatives 2016

The need for new multidisciplinary and digital skills in particular Data Scientist
– Expected rapidly growing demand will lead to more than 800 000 unfilled vacancies by 2020

European Open Science Cloud (EOSC) and European digital research and data infrastructure
– To offer 1.7 million European researchers and 70 million professionals in science and technology open and seamless services for storage, management, analysis and re-use of research data

Address growing demand and shortage of data-related skills

Addresses the need for digital and complementary skills, ensure young talents flow into data driven research and industry

Launch Digital Skills and Jobs Coalition (1st December 2016, Brussels) to develop comprehensive national digital skills strategies by mid-2017
Demand for new type of “dynamic self-re-skilling workforce”

Continuous learning and professional development to become a shared responsibility of workers and organisations

[ref] SKILLS FOR A DIGITAL WORLD, OECD, 25-May-2016