Cloud Based Big Data Infrastructure: Architectural Components and Automated Provisioning

The 2016 International Conference on High Performance Computing & Simulation (HPCS2016)
18-22 July 2016, Innsbruck, Austria

Yuri Demchenko, University of Amsterdam
The research leading to these results has received funding from the Horizon2020 project CYCLONE
Big Data definition revisited: 6 V’s of Big Data

- **Volume**
 - Terabytes
 - Records/Arch
 - Tables, Files
 - Distributed

- **Velocity**
 - Batch
 - Real/near-time
 - Processes
 - Streams

- **Value**
 - Correlation
 - Statistical
 - Events
 - Hypothetical

- **Variety**
 - Structured
 - Unstructured
 - Multi-factor
 - Probabilistic
 - Linked
 - Dynamic

- **Variability**
 - Changing data
 - Changing model
 - Linkage

- **Veracity**
 - Trustworthiness
 - Authenticity
 - Origin, Reputation
 - Availability
 - Accountability

Generic Big Data Properties
- Volume
- Variety
- Velocity

Acquired Properties (after entering system)
- Value
- Veracity
- Variability

Commonly accepted 3V’s of Big Data
- Volume
- Velocity
- Variety

Adopted in general by NIST BD-WG
Big Data definition: From 6V to 5 Components

(1) Big Data Properties: 6V
 – Volume, Variety, Velocity
 – Value, Veracity, Variability

(2) New Data Models
 – Data linking, provenance and referral integrity
 – Data Lifecycle and Variability/Evolution

(3) New Analytics
 – Real-time/streaming analytics, machine learning and iterative analytics

(4) New Infrastructure and Tools
 – High performance Computing, Storage, Network
 – Heterogeneous multi-provider services integration
 – New Data Centric (multi-stakeholder) service models
 – New Data Centric security models for trusted infrastructure and data processing and storage

(5) Source and Target
 – High velocity/speed data capture from variety of sensors and data sources
 – Data delivery to different visualisation and actionable systems and consumers
 – Full digitised input and output, (ubiquitous) sensor networks, full digital control
Moving to Data-Centric Models and Technologies

- Current IT and communication technologies are host based or host centric
 - Any communication or processing are bound to host/computer that runs software
 - Especially in security: all security models are host/client based

- Big Data requires new data-centric models
 - Data location, search, access
 - Data integrity and identification
 - Data lifecycle and variability
 - Data centric (declarative) programming models
 - Data aware infrastructure to support new data formats and data centric programming models

- Data centric security and access control
Moving to Data-Centric Models and Technologies

- Current IT and communication technologies are host based or host centric - Any communication or processing are bound to host/computer that runs software - Especially in security: all security models are host/client based

- Big Data requires new data-centric models - Data location, search, access - Data integrity and identification - Data lifecycle and variability - Data centric (declarative) programming models - Data aware infrastructure to support new data formats and data centric programming models

- Data centric security and access control

RDA developments (2016): Data become Infrastructure themselves
- PID, Metadata Registries, Data models and formats
- Data Factories

HPCS2016 Cloud based Big Data Infrastructure 6
NIST Big Data Working Group (NBD-WG) and ISO/IEC JTC1 Study Group on Big Data (SGBD)

 - Built on experience of developing the Cloud Computing standards fully accepted by industry
 Volume 1: NIST Big Data Definitions
 Volume 2: NIST Big Data Taxonomies
 Volume 3: NIST Big Data Use Case & Requirements
 Volume 4: NIST Big Data Security and Privacy Requirements
 Volume 5: NIST Big Data Architectures White Paper Survey
 Volume 6: NIST Big Data Reference Architecture
 Volume 7: NIST Big Data Technology Roadmap

- NBD-WG defined 3 main components of the new technology:
 - Big Data Paradigm
 - Big Data Science and Data Scientist as a new profession
 - Big Data Architecture

The **Big Data Paradigm** consists of the distribution of data systems across horizontally-coupled independent resources to achieve the scalability needed for the efficient processing of extensive datasets.
Main components of the Big Data ecosystem
- Data Provider
- Big Data Applications Provider
- Big Data Framework Provider
- Data Consumer
- Service Orchestrator

Big Data Lifecycle and Applications Provider activities
- Collection
- Preparation
- Analysis and Analytics
- Visualization
- Access

Big Data Ecosystem includes all components that are involved into Big Data production, processing, delivery, and consuming

Big Data Architecture Framework (BDAF) by UvA

(1) Data Models, Structures, Types
 - Data formats, non/relational, file systems, etc.

(2) Big Data Management
 - Big Data Lifecycle (Management) Model
 • Big Data transformation/staging
 - Provenance, Curation, Archiving

(3) Big Data Analytics and Tools
 - Big Data Applications
 • Target use, presentation, visualisation

(4) Big Data Infrastructure (BDI)
 - Storage, Compute, (High Performance Computing,) Network
 - Sensor network, target/actionable devices
 - Big Data Operational support

(5) Big Data Security
 - Data security in-rest, in-move, trusted processing environments
Big Data Ecosystem: General BD Infrastructure
Data Transformation, Data Management

Big Data Infrastructure
- Heterogeneous multi-provider inter-cloud infrastructure
- Data management infrastructure
- Collaborative Environment (user/groups managements)
- Advanced high performance (programmable) network
- Security infrastructure
Big Data Infrastructure and Analytics Tools

Big Data Infrastructure
- Heterogeneous multi-provider inter-cloud infrastructure
- Data management infrastructure
- Collaborative Environment
- Advanced high performance (programmable) network
- Security infrastructure
- Federated Access and Delivery Infrastructure (FADI)

Big Data Analytics Infrastructure/Tools
- High Performance Computer Clusters (HPCC)
- Big Data storage and databases SQL and NoSQL
- Analytics/processing: Real-time, Interactive, Batch, Streaming
- Big Data Analytics tools and applications
Data Lifecycle/Transformation Model

- Data Model changes along data lifecycle or evolution
- Data provenance is a discipline to track all data transformations along lifecycle

Data (inter)linking
- PID/OID
- Identification
- Privacy, Opacity
- Traceability vs Opacity

Multiple Data Models and structures
- Data Variety and Variability
- Semantic Interoperability

Data Storage (Big Data capable)

- Data Collection & Registration
- Data Filter/Enrich, Classification
- Data Analytics, Modeling, Prediction
- Data Delivery, Visualisation

Consumer applications

Data repurposing, Analytics re-factoring, Secondary processing

Identifying and linking data
- Persistent data/object identifiers (PID/OID)
- Traceability vs Opacity
- Referral integrity
Cloud Based Big Data Services

Characteristics:
Massive data and computation on cloud, small queries and results

Examples:
Search, scene completion service, log processing
Big Data Stack components and technologies

The major structural components of the Big Data stack are grouped around the main stages of data transformation

- **Data ingest**: Ingestion will transform, normalize, distribute and integrate to one or more of the Analytic or Decision Support engines; ingest can be done via ingest API or connecting existing queues that can be effectively used for handles partitioning, replication, prioritisation and ordering of data

- **Data processing**: Use one or more analytics or decision support engines to accomplish specific task related to data processing workflow; using batch data processing, streaming analytics, or real-time decision support

- **Data Export**: Export will transform, normalize, distribute and integrate output data to one or more Data Warehouse or Storage platforms;

- **Back-end data management, reporting, visualization**: will support data storage and historical analysis; OLAP platforms/engines will support data acquisition and further use for Business Intelligence and historical analysis.
Big Data Stack

Hook into an existing **queue** to get copy / subset of data. Queue handles partitioning, replication, and ordering of data, can manage backpressure from slower downstream components.

- **Data Ingestion**
 - Ingestion will transform, normalize, distribute and integrate to one or more of the Analytic / Decision Engines of choice.
 - Use one or more Analytic / Decision engines to accomplish specific task on the Fast Data window.

- **Data Processing**
 - **Streaming Analytics**
 - NON QUERY
 - TIME WINDOW MODEL
 - Counting, Statistics
 - Rules
 - Triggers
 - **Batch processing**
 - SEARCH QUERY
 - Decision support
 - Statistics
 - **Real-Time Decisions**
 - CONTINUOUS QUERY
 - OLTP MODEL
 - Prog Request-Response
 - Stored Procedures
 - Export for Pipelining

- **Data Export**
 - Data management, reporting, visualisation
 - Data Store & Historical Analytics
 - OLAP / DATA WAREHOUSE MODEL
 - PERIODIC QUERY
 - Business Intelligence, Reports
 - User Interactive

- **Message/Data Queue**
 - Use **direct Ingestion** API to capture entire stream at wire speed.

- **Real-Time Decisions** and/or Results can be fed back “up-stream” to influence the “next step”.

- **Export** will transform, normalize, distribute and integrate to one or more Data Warehouse or Storage Platforms.

Ingestion will transform, normalize, distribute and integrate to one or more of the Analytic / Decision Engines of choice.
Important Big Data Technologies

Microsoft Azure:
- Event Hubs
- Data Factory
- Stream Analytics
- HDInsight
- DocumentDB

Google GCE:
- DataFlow
- BigQuery

Amazon AWS:
- Kinesis
- EMR
- DynamoDB

Proprietary:
- Vertica
- Hortonworks

Open Source
- Samza
- Kafka
- Flume
- Scribe
- Storm
- Cascading
- S4
- Crunch
- Spark
- EMR
- HDInsight

Cloud based Big Data Infrastructure
- Data management, reporting, visualisation
- Real-Time Decisions
- Data Ingestion
- Message/Data Queue
- Batch processing
- Event Hubs
- Data Factory, Kafka, Flume, Scribe

Proprietary:
- Vertica
- HortonWorks

Open Source
- Samza
- Kafka
- Flume
- Scribe
- Storm
- Cascading
- S4
- Crunch
- Spark
- EMR
- HDInsight
- Vertica
- MongoDB
- CouchDB
- VoltDB

Microsoft Azure:
- Event Hubs
- Data Factory
- Stream Analytics
- HDInsight
- DocumentDB

Google GCE:
- DataFlow
- BigQuery

Amazon AWS:
- Kinesis
- EMR
- DynamoDB

Proprietary:
- Vertica
- Hortonworks

Open Source
- Samza
- Kafka
- Flume
- Scribe
- Storm
- Cascading
- S4
- Crunch
- Spark
- EMR
- HDInsight
- Vertica
- MongoDB
- CouchDB
- VoltDB
Cloud Platform Benefits for Big Data

- Cloud deployment on virtual machines or containers
 - Applications portability and platform independence, on-demand provisioning
 - Dynamic resource allocation, load balancing and elasticity for tasks and processes with variable load

- Availability of rich cloud based monitoring tools for collecting performance information and applications optimisation

- Network traffic segregated and isolation
 - Big Data applications benefit from lowest latencies possible for node to node synchronization, dynamic cluster resizing, load balancing, and other scale-out operations
 - Clouds construction provides separate networks for data traffic and management traffic
 - Traffic segmentation by creating Layer 2 and Layer 3 virtual networks inside user/application assigned Virtual Private Cloud (VPC)

- Cloud tools for large scale applications deployment and automation
 - Provide basis for agile services development and Zero-touch services provisioning
 - Applications deployment in cloud is supported by major Integrated Development Environment (IDE)
Cloud HPC and Big Data Platforms

• HPC on cloud platform
 – Special HPC and GPU VM instances as well as Hadoop/HPC clusters offered by all CSPs

• Amazon Big Data services
 – Amazon Elastic MapReduce, Kinesis, DynamoDB, Regshift, etc

• Microsoft Analytics Platform System (APS)
 – Microsoft HD Insight/Hadoop ecosystems

• IBM BlueMix applications development platform
 – Includes full cloud services and data analytics services

• LexisNexis HPC Cluster System
 – Combing both HPC cluster platform and optimized data processing languages

• Variety of Open Source tools
 – Streaming analytics/processing tools: Apache Kafka, Apache Storm, Apache Spark
LexisNexis HPCC Systems Architecture

- THOR is used for massive data processing in batch mode for ETL processing
- ROXIE is used for massive query processing and real-time analytics
LexisNexis HPCC Systems as an integrated Open Source platform for Big Data Analytics

HPCC Systems data analytics environment components and HPCC Systems architecture model is based on a distributed, shared-nothing architecture and contains two cluster

• **THOR Data Refinery**: Massively parallel Extract, Transform, and Load (ETL) engine that can be used for variety of tasks such as massive: joins, merges, sorts, transformations, clustering, and scaling.

• **ROXIE Data Delivery**: Massively parallel, high throughput, structured query response engine with real time analytics capability

Other components of the HPCC environment: data analytics languages

• **Enterprise Control Language (ECL)**: An open source, data-centric declarative programming language
 – The declarative character of ECL language simplifies coding
 – ECL is explicitly parallel and relies on the platform parallelism.

• **LexisNexis proprietary record linkage technology SALT (Scalable Automated Linking Technology)**: automates data preparation process: profiling, parsing, cleansing, normalisation, standardisation of data.
 – Enables the power of the HPCC Systems and ECL

• **Knowledge Engineering Language (KEL)** is an ongoing development
 – KEL is a domain specific data processing language that allows using semantic relations between entities to automate generation of ECL code.
Cloud-powered Services Development Lifecycle: DevOps == Continuous service improvement

- Easily creates test environment close to real
- Powered by cloud deployment automation tools
 - To enable configuration Management and Orchestration, Deployment automation
- Continuous development – test – integration
 - CloudFormation Template, Configuration Template, Bootstrap Template
- Can be used with Puppet and Chef, two configuration and deployment management systems for clouds

[ref] Building Powerful Web Applications in the AWS Cloud" by Louis Columbus
CYCLONE Project: Automation platform for cloud based applications

- Biomedical and Energy applications
- Multi-cloud multi-provider
- Distributed and data processing environment
- Network infrastructure provisioning
 - Dedicated and virtual overlay over Internet
- Automated applications provisioning
CYCLONE Components

<table>
<thead>
<tr>
<th>SaaS</th>
<th>Cloud Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaaS</td>
<td>SlipStream Deployment Manager</td>
</tr>
<tr>
<td>IaaS</td>
<td>Stratuslab IaaS Plattform</td>
</tr>
<tr>
<td>SDN</td>
<td>OpenNaaS SDN Controller</td>
</tr>
</tbody>
</table>

Multi-cloud Management
- Biomedical and Energy applications
- Multi-cloud multi-provider
- Distributed and data processing environment
- Network infrastructure provisioning
 - Dedicated and virtual overlay over Internet
- Automated applications provisioning

Cyclone
SlipStream – Cloud Automation and Management Platform

Providing complete engineering PaaS supporting DevOps processes

• Deployment engine

• “App Store” for sharing application definitions with other users

• “Service Catalog” for finding appropriate cloud service offers

• Proprietary Recipe format
 – Stored and shared via AppStore

• All features are available through web interface or RESTful API

• Similar to Chef, Puppet, Ansible

• Supports multiple cloud platforms: AWS, Microsoft Azure, StratusLab, etc.

Bioinformatics Use Cases

1. Securing human biomedical data
2. Cloud virtual pipeline for microbial genomes analysis
3. Live remote cloud processing of sequencing data

On-demand bandwidth, compute as well as complex orchestration.
The definition of an application component consists of a series of **recipes** that are executed at various stages in the lifecycle of the application.

- **Pre-install**: Used principally to configure and initialize the operating system’s package management.
- **Install packages**: A list of packages to be installed on the machine. SlipStream supports the package managers for the RedHat and Debian families of OS.
- **Post-install**: Can be used for any software installation that cannot be handled through the package manager.
- **Deployment**: Used for service configuration and initialization. This script can take advantage of SlipStream’s “parameter database” to pass information between components and to synchronize the configuration of the components.
- **Reporting**: Collects files (typically log files) that should be collected at the end of the deployment and made available through SlipStream.
The master node deployment script performs the following actions:

- Initialize the yum package manager.
- Install bind utilities.
- Allow SSH access to the master from the slaves.
- Collect IP addresses for batch system.
- Configure batch system admin user.
- Export NFS file systems to slaves.
- Configure batch system.
- Indicate that cluster is ready for use.
Example script to export NSF directory

ss-display "Exporting SGE_ROOT_DIR..."

```bash
echo -ne "\$SGE_ROOT_DIR\t" > $EXPORTS_FILE
for ((i=1; i<=`ss-get Bacterial_Genomics_Slave:multiplicity`; i++ ));
do
    node_host=`ss-get Bacterial_Genomics_Slave.$i:hostname`
    echo -ne $node_host >> $EXPORTS_FILE
    echo -ne "(rw,sync,no_root_squash) " >> $EXPORTS_FILE
done
echo "\n" >> $EXPORTS_FILE # last for a newline
exportfs -av
```

- ss-get command retrieves a value from the parameter database.
- It determines the number of slaves and then loops over each one
 - Retrieves each IP address (hostname) and add it to the NFS exports file.
Questions and Discussion

• More information about CYCLONE project
 http://www.cyclone-project.eu/

• SlipStream