

Security Infrastructure for Cloud Infrastructure as a Service (IaaS) Provisioning Model

Yuri Demchenko SNE Group, University of Amsterdam

Cloud Security Workshop 10-11 January 2011, Stavanger

Cloud Security Workshop -Stavanger, 10-11 Jan 2011

Cloud IaaS Security

- System and Network Engineering group at University of Amsterdam
- Security Services Models Evolution
 - Evolution of the Generic AAA Authorisation Architecture
 - Security in Clouds main issues
- Architectural Framework of the Cloud IaaS Provisioning Model
 - Composable Services Architecture (CSA)
 - Service Delivery Framework (SDF)
 - Infrastructure Services Modeling Framework (ISMF)
- Cloud Security and Dynamic Security Services Provisioning
- GEMBus as CSA middleware

 Additional information (GEYSERS AAI, GAAA-NRP, TMF SDF, ITU-T NGN)

System and Network Engineering Group at University of Amsterdam

- SNE group is primarily a research group but also supports SNE master education
- Main research areas
 - High speed optical networks
 - Recent testbed achieved sub-40Gbps at Amsterdam-CERN link
 - Information modeling for network description
 - Extending to general IT resources
 - Security and generic AAA Authorisation framework (GAAA-AuthZ)
 - Evolving from client/security model to dynamically provisioned services
- Long term research cooperation with SURFnet and GigaPort programs in NL
- Re-building own testbed for optical network technologies and AAA/Security
- Recent and current projects participation DatGrid, NextGrid, EGEE, Phosphorus, GEYSERS, GEANT3, NOVI
- Interest to Cloud technologies as an emerging common method to access complex infrastructure services – network and IT resources
 - Defining corresponding security models and infrastructure

Security Services aspects/goals

- ✓ Access Control (including AuthN, AuthZ, Identity Management)
- Trust Management (including key management)
- ✓ Policy Based Management (PBM)
- Data protection (Confidentiality, Integrity, Access Control)
- Communication Security
- Privacy (complex of measures and policy based access control)

Security Services Evolution

- Security services have dual task:
 - Protecting/ensuring normal/secure system operation
 - Protecting/providing secure access to system services and resources
- From the beginning of computer technologies the security services evolved from implicit/completely integrated with the program or computer to the composable components of the SOA based systems
 - Gradually revealing their duality

Security Services Evolution – until late 1960s

Computer technology and Security services evolution

- Mechanical to Electronic calculators with simple input/output form
 - Simple calculation process control is programmed as a part of the program by using switches and stacks
 - Program execution is managed and controlled by user/programmer
 - No specific security services except physical security
 - Examples: Calculator, Turing Machine
- Mainframe computers with single task execution in time sharing mode
 - Simple Task monitor loads tasks/jobs in a scheduled sequence
 - Security services
 - Physical access control via terminals which can be also physically protected
 - Remote terminals may use hardware data/communication protection

Security Services Evolution – until 1990s

- Multi-user and multi-task mainframe computers
 - Operating System performs programs, tasks and input/output functions/devices management
 - Multi-user and multi-task OS and Multi-user terminals
 - Security services are applied and managed by OS itself
 - Provide tasks (and user) isolation at the OS level
 - User access is controlled with the remote terminal protocols
 - First abstract security models: Reference Monitor, Bell-LaPadula, Biba, Clark-Wilson, Multi-Level Security (user clearance vs Data Sensitivity), RBAC
 - Overall security model is defined as the Trusted Computing Base (TCB)
- Distributed systems, Open Systems, Internet
 - Inter-computer communication, OSI, Internet, TCP/IP, Client/Server model
 - Two basic security models: TCB and OSI Security
 - Security services are decoupled from the main services and defined as such that can be called by other services to protect their normal operation
 - OSI Security Architecture proposed and standardised: ISO7498-2, ITU-T X.800 - defining multi-layer security services and mechanisms

Security Services Evolution – late 1990s – late 2009

- Web based services, Web Services, Service Oriented Architecture (SOA)
 - Growing amount of service, information accessed via Internet
 - SOA facilitate services decomposition and decoupling of security services
 - Client/server model is changed to Requestor/Provider
 - SOA defines message based protocols (on the top of TCP/IP stack) SOAP or REST/HTTP based
 - Computer security is provided by OS and network security is provided by user/terminal clients or services
 - SOA/WS security model is conformant to OSI/Internet security model by adding WS related upper message layer security
 - Security services are applied and managed separately by Security Management System
 - Definition of the Trusted Computing Platform Architecture (TCPA)
- Grid Computing
 - Cooperative resources sharing for Collaborative groups called Virtual Organisations (VO)
 - Open Grid Services Architecture (OGSA) is Web Services based with defined Job management/execution framework
 - OGSA Security architecture is VO and Web Services based
 - Security architecture attempts to bridge two basic security models: OSI/Internet user access and job submission security and TCB based job execution security
 - Security sessions context management becomes explicit task and require special mechanisms (protocols and credentials/assertions or security tokens)

Security Services Evolution – since approx 2008

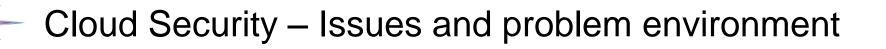
- Next Generation Network (NGN) and SOA based Enterprise Computing models
 - Network and IT services convergence based on SOA and Web Services
 - Addresses service virtualisation and on-demand provisioning
 - Enterprise Service Bus (ESB) as environment for dynamically re-configured virtualised composable services
 - Definition of the Service Delivery Framework (SDF) defining both the on-demand provisioned services lifecycle and service delivery and operation supporting infrastructure and business model
 - Federated access control to distributed multidomain services and resources
 - Security services are becoming dynamically composable services however (manually) pre-configured
 - Dynamic security association and security context management in multidomain environment
 - Security services lifecycle management as composable services

• Emerging Cloud Computing

- Emerging as a common access method to complex infrastructure services/resources provisioned ondemand
 - (Infrastructure, Platform, Software) as a Service provisioning models
 - · Services and resources are based on virtualisation
 - Services are provisioned on demand and typically require/follow standard Service Delivery workflow
 - There is no well-defined architecture frameworks yet
- There is no well defined security model or security architecture
 - Security paradigm change due to the fact that user data are processed in uncontrolled for user environment
 - Current security model is based on SLA contracted between user and provider and enforced by provider
 - Require solutions/mechanisms to enable trusted remote platform for users
 - Security context and lifecycle management
 - Prospective security architecture should support both dynamic provisioning environment and dynamic security services provisioning
 - Potentially interest will return to using Trusted Computing Platform Architecture
 - Promising/emerging research on homomorphic/elastic encryption (recently proposed by Stanford Univ.)

GAAA-AuthZ Development Stages (1)

- Defined in RFC2904 RFC2906
 - Redefines OSI X.812 Authorisation Framework for Internet protocols
 - Addresses multi-domain issues and session management
- Authorisation for web based services and Web Services
 - Authorisation session context management with AuthZ tickets
 - User-centric security model for multi-domain multilayer collaborative environment
 - Implementation in Collaboratory.nl
- Authorisation for Grid/OGSA and Web Services
 - Security context and Authorisation session management in multi-tier environment combining Internet user access and TCB/UNIX based job execution environment
 - VO based security federations and attributes management in multi-domain collaborative environment
 - Common XACML/SAML attributes profile for authorisation in Grid
 - Implementation in EGEE and gLite Authorisation Framework

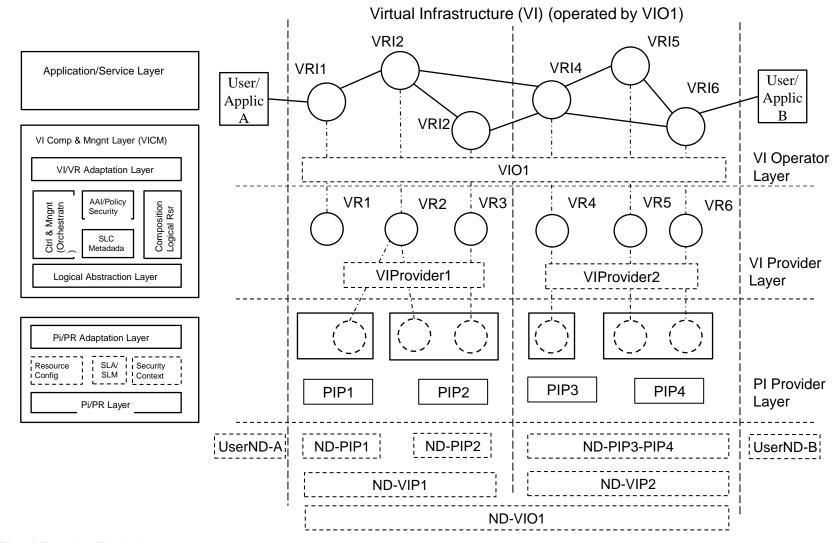


GAAA-AuthZ Development Stages (2)

- Generic AAA Authorisation framework for multidomain Network Resource Provisioning - GAAA-NRP profile
 - Authorisation session and security context management in multidomain environment during the whole provisioning process
 - Access and pilot tokens for access control and signaling
 - Dynamic trust association creation and management
 - Common XACML/SAML attributes profile for NRP
 - Implementation in Phosphorus
- Security infrastructure for on-demand infrastructure services provisioning
 - Extended security context management and GAAAPI interfaces
 - Dynamic policy generation and federated attributes management
 - Dynamic trust associations and security property information modeling
 - Security Services Lifecycle Management (SSLM) model and supporting mechanisms
 - Projects GEYSERS and GN3-JRA3 Composable Services
- On-demand provisioned virtualised security services and infrastructure
 - Security infrastructure for Cloud IaaS provisioning infrastructure
 - Dynamic security services provisioning and security infrastructure virtualisation

SNE @ UvA take on Cloud technology

- Defining architectural framework for Cloud Infrastructure as a Service (IaaS) provisioning model
 - Consistent security architecture can only be built if the main system/services/infrastructure are well defined
- Dynamically configured security services/infrastructure
- OGF On-Demand Infrastructure Service (ISOD) provisioning BoF/RG
 - Including definition of IaaS and required security models

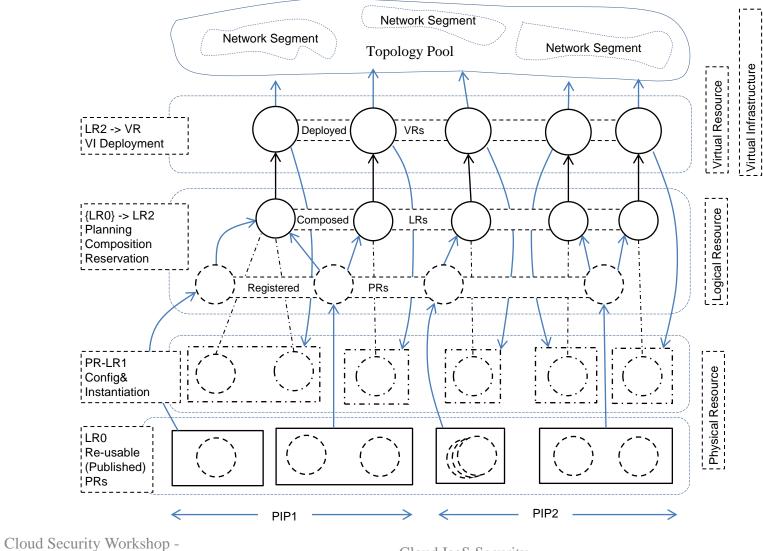

- Virtualised services
- On-demand/dynamic provisioning
- Multi-tenant/multi-user
- Multi-domain
- Uncontrolled execution environment
 - Data protection
 - Trusted Computing Platform Architecture (TCPA)
 - Promising homomorphic/elastic encryption
- Integration with legacy security services/infrastructure of the providers
- Integration with the providers business workflow

The proposed framework should support on-demand infrastructure services provisioning and operation

- Composable Services Architecture (CSA) that intends to provide a conceptual and methodological framework for developing dynamically configurable virtualised infrastructure services
- Service Delivery Framework (SDF) that provides a basis for defining the whole composable services life cycle management and supporting infrastructure services
- Infrastructure Services Modeling Framework (ISMF) that provides a basis for the infrastructure resources virtualisation and management, including description, discovery, modeling, composition and monitoring
- (Optionally) Service Control and Management Plane/Framework may be defined as combination of management functionality in all 3 components
- Security services/infrastructure have a dual role:
 - Virtual Security Infrastructure provisioned as a part of virtualised infrastructure
 - Support normal/secure operation of the whole provisioning framework

IaaS General Model

Cloud Security Workshop -Stavanger, 10-11 Jan 2011


Cloud IaaS Security

Virtual Infrastructure Composition and Management (VICM) Layer Operation

- Main actors involved into provisioning process
 - Physical Infrastructure Provider (PIP)
 - Virtual Infrastructure Provider (VIP)
 - Virtual Infrastructure Operator (VIO)
- Virtual Infrastructure Composition and Management (VICM) layer includes
 - VICM middleware defined as CSA
 - Logical Abstraction Layer and the VI/VR Adaptation Layer facing correspondingly lower PIP and upper Application layer.
- The infrastructure provisioning process includes the following main stages
 - (1) virtual infrastructure creation request
 - (2) infrastructure planning and advance reservation;
 - (3) infrastructure deployment including services synchronization and initiation;
 - (4) operation stage
 - (5) infrastructure decommissioning
- VICM redefines Logical Infrastructure Composition Layer (LICL) proposed by GEYSERS project
 - Basic functionality is implemented as GEMBus/CSA

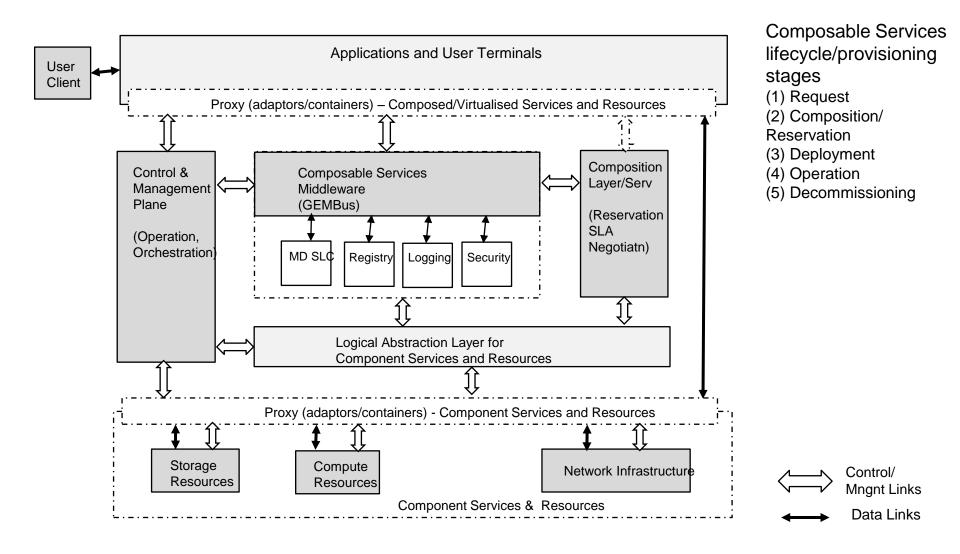
ISMF – Virtual Resource Lifecycle

Stavanger, 10-11 Jan 2011

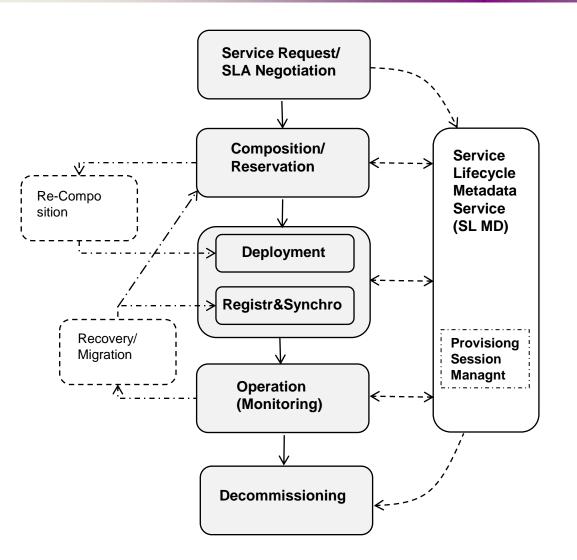
ISMF - Relation between PR-LR-VR-VI

- Virtual Resource lifecycle defines relations between different resource presentations along the provisioning process
- Physical Resource information is published by PIP to the Registry service serving VICM and VIP
 - Logical Resource representing PR includes also properties that define possible (topological) operations on the PR, such as e.g. partitioning or aggregation.
- Published LR information presented in the commonly adopted form (using common data or semantic model) is then used by VICM/VIP composition service to create requested infrastructure as combination of (instantiated) Virtual Resources and interconnecting them with the available network infrastructure
- Network infrastructure can be composed of a few network segments (from the network topology pool) run by different network providers.
- Composed LRs are deployed as VRI/VI to VIP/VIO and as virtualised/instantiated PR-LR to PIP
- Resource/service description format considered
 - NDL/NML (Network Description Language / Network Markup Language at OGF)
 - USDL (Unified Services Description Language) at W3C
 - VXDL infrastructure service request format by INRIA

- Defined as middleware for on-demand provisioned Composable Services
- Proposed in the GEANT3 JRA3 Composable Services project
- Implemented as GEMBus (GEANT Multidomain Bus)

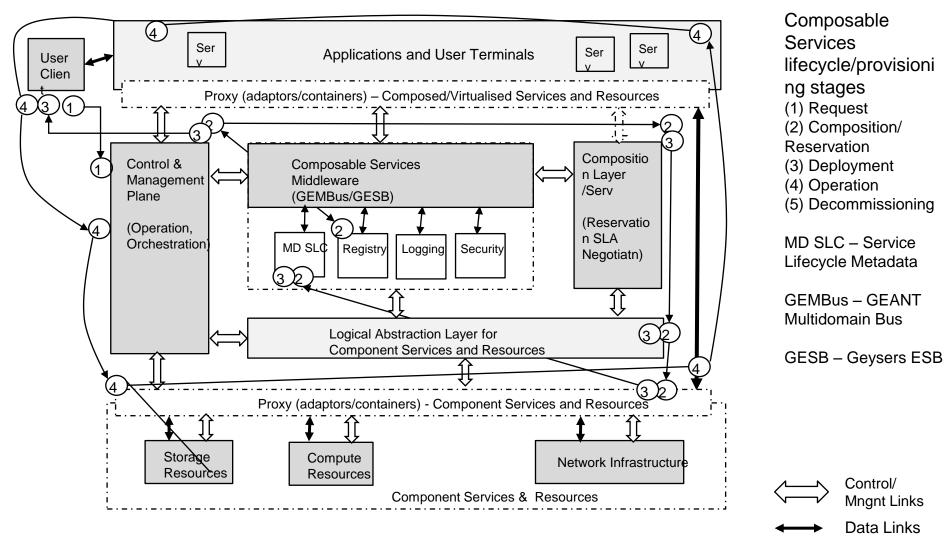

Composable Services Layered Model

Application Layer
Virtualisation Layer
Composition & Orchestration Layer
Logical Abstraction Layer
Messaging Layer


Network&Transport Layer

- Application Layer hosts application related protocols
- GEMBus Messaging Infrastructure (GMI) includes
 - Messaging Layer
 - Virtualisation (Composition&Orchestration) Layer
- Network&Transport Layer should allow using/binding to standards communication and security protocol
- Composable services are defined as *"dynamically re-configured virtualised services"* according to OSIMM model

Composable Services Architecture – Version 0.13


Composable Services Lifecycle/Provisioning Workflow

- Main stages/phases
 - Service Request (including SLA negotiation)
 - Composition/Reservation (aka design)
 - Deployment, including Registration/Synchronisation
 - Operation (including Monitoring)
 - Decommissioning
- Additional stages
 - Re-Composition should address incremental infrastructure changes
 - Recovery/Migration can use SL-MD to initiate resources resynchronisation but may require re-composition
- The whole workflow is supported by the Service Lifecycle Metadata Service (SL MD)

Cloud Security Workshop -Stavanger, 10-11 Jan 2011

Composable Services Architecture – Version 0.13 Lifecycle stages workflow

Cloud Security Workshop -Stavanger, 10-11 Jan 2011

Cloud IaaS Security

CSA functional elements interaction

- (1) Request
 - User Client -> Control and Management

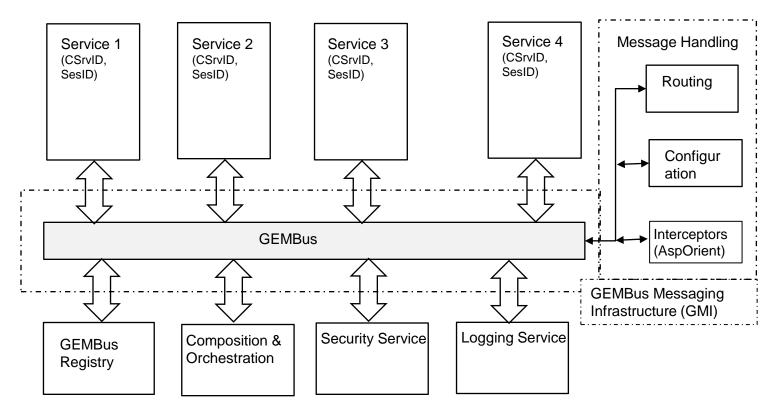
• (2) Composition/ Reservation

 Control&Mngnt -> Registry -> Composition/Reservation Serv -> (Logical Abstract -> Resr Adapters) -> LC Metadata Serv

• (3) Deployment

 Control&Mngnt -> Composition/Reservation Serv -> (Logical Abstract -> Resr Adapters) -> LC Metadata Serv -> User Client

• (4) Operation

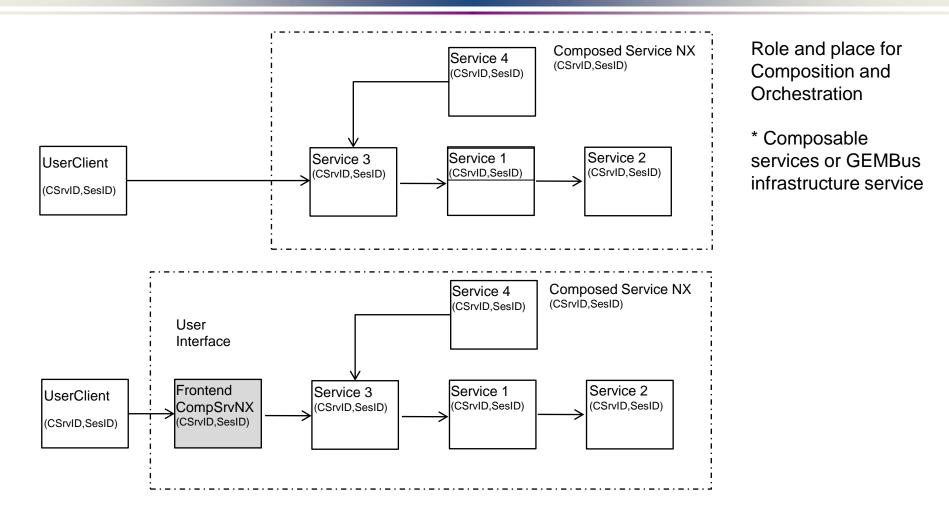

 User Client -> Control&Mngnt (Orchestration) -> Rsr Adapters -> Virtualised/Composed Applications

• (5) Decommissioning

Control&Mngnt -> LC Metadata Serv -> (Logical Abstract -> Resr Adapters)

GEMBus Infrastructure for Composable Service

GEMBus Component Services


GEMBus Infrastructure Services

GEMBus provides common dynamically configurable messaging infrastructure for Composable services communication

Cloud Security Workshop -Stavanger, 10-11 Jan 2011

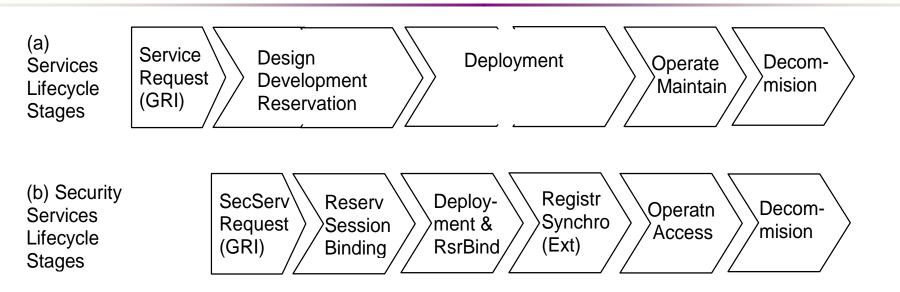
Cloud IaaS Security

Example Service Composition – Service NX

 CSrvID, SesID – bind component services into the on-demand provisioned Composed service NX

Cloud Security Workshop -Stavanger, 10-11 Jan 2011

- Security Service request and generation of the GRI that will serve as a provisioning session identifier and will bind all other stages and related security context.
- **Reservation session binding** that provides support for complex reservation process including required access control and policy enforcement.
- **Deployment stage** begins after all component resources have been reserved and includes distribution of the security context and binding the reserved resources or services to GRI as a common provisioning session ID.
- Registration&Synchronisation stage (optional) specifically targets possible scenarios with the provisioned services migration or failover/interruption. In a simple case, the Registration stage binds the local resource or hosting platform run-time process ID to the GRI as a provisioning session ID.
- **Operation stage** security services provide access control to the provisioned services and maintain the service access or usage session.
- **Decommissioning** stage ensures that all sessions are terminated, data are cleaned up and session security context is recycled.


Registr Service Deploy-Reserv Decom-Operatn Synchro Request ment & Session mision Access (Opt) (GRI) RsrBind Binding

Relation between SSLM/SLM stages and supporting general and security mechanisms

SLM stages	Request	Design/Reservatio n Development	Deployment	Operation	Decomissio ning	
Process/ Activity	SLA Nego tiation	Service/ Resource Composition Reservation	Composition Configuration	Orchestration/ Session Management	Logoff Accounting	
Mechanisms/Methods						
SLA	V				V	
Workflow		(V)		V		
Metadata	V	V	V	V		
Dynamic Security Associatn		(V)	V	V		
AuthZ Session Context		V	(V)	V		
Logging		(V)	(V)	V	V	

Relation between SSLM and general SLM

Specific SSLM stages and mechanisms to ensure consistency of the security context management

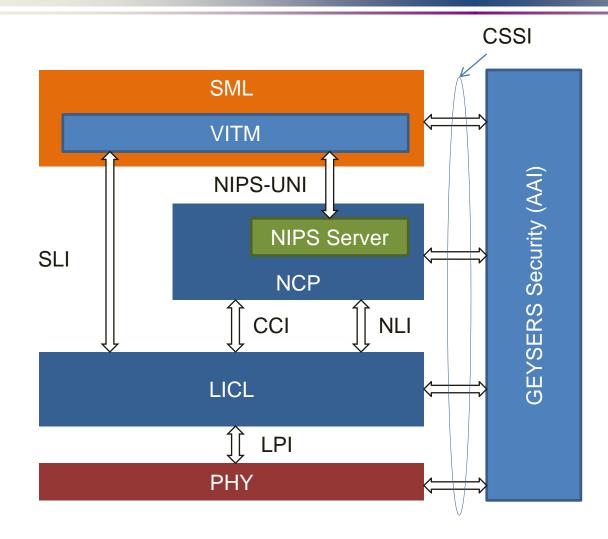
- Security Service Request that initiates creation of the dynamic security association and may use SLA security context.
- **Reservation Session Binding** with GRI (also a part of general SDF/SLM) that provides support for complex reservation process including required access control and policy enforcement.
- **Registration&Synchronisation** stage (as part Deployment stage) that allows binding the local resource or hosting platform run-time process ID to the GRI as a provisioning session ID. Specifically targets possible scenarios with the provisioned services migration or restoration.

Possible next steps

- Possible EU project
 - Can be both general Cloud problems and Cloud Security
 - May combine both infrastructure services and security
- ISOD BoF/RG at OGF31 (22-25 March 2011, Taipei, Taiwan)
 - Cloud Security BoF at OGF31
 - Additionally, special session on Cloud related topic at OGF31
- Workshop on Cloud Security at CloudCom2011 in Athens
- SECOTS2011 Workshop at CTS2011 (22-26 May 2011, Philadelphia, USA)
- Possible other meeting events: CLOSER2011/NL, Cloud Workshop at INFOCOM2011/Changhai, CLOUD2011 in Washington

Additional Information

- SDF Lifecycle Management model
- GAAA-NRP Operation and provisioning process
- Using AuthZ tickets and tokens for access control and signaling
- ITU-T NGN Open Service Environment

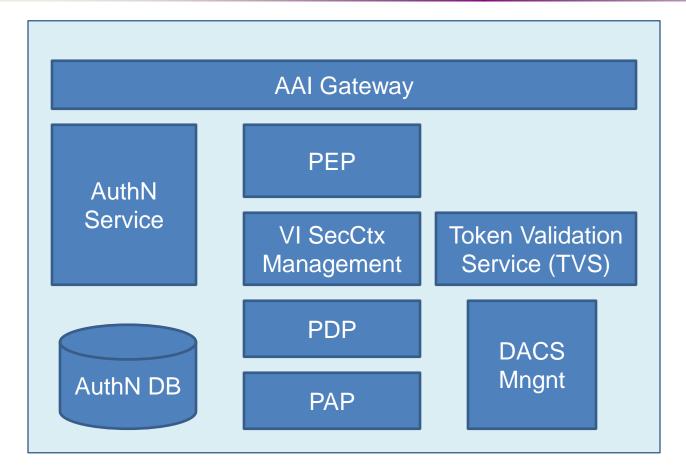


AAI in GEYSERS (1)

Authentication and Authorization Infrastructure (AAI) functionalities

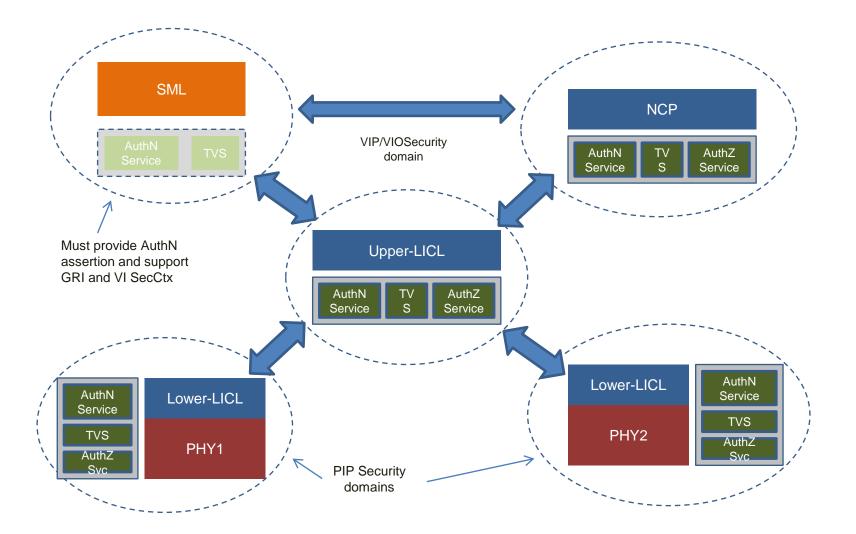
- Access control: interfaces, VI provisioning service
 - Authentication standard implementation
 - Authorization primary focus
 - Identity management to support multi-domain attributes management
- Security context management for VI provisioning service
 - Cross-layer/multi-layer
 - Inter-domain/dynamic security associations
 - Lifecycle and provisioning session security context
- Dynamic access control services/infrastructure
 - Security Services Lifecycle Management (SSLM)
 - Dynamic security/trust associations management

AAI in GEYSERS (2)

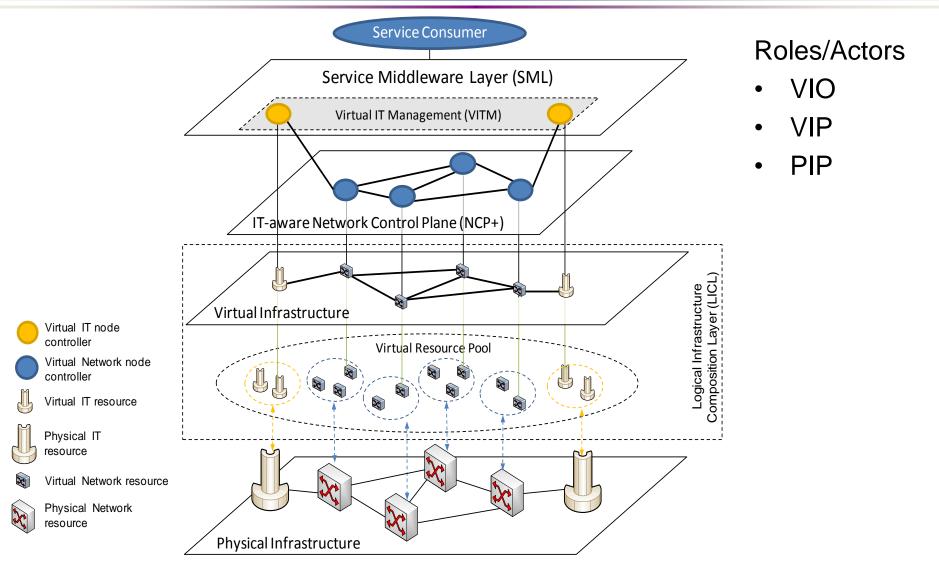


Basic CSSI services

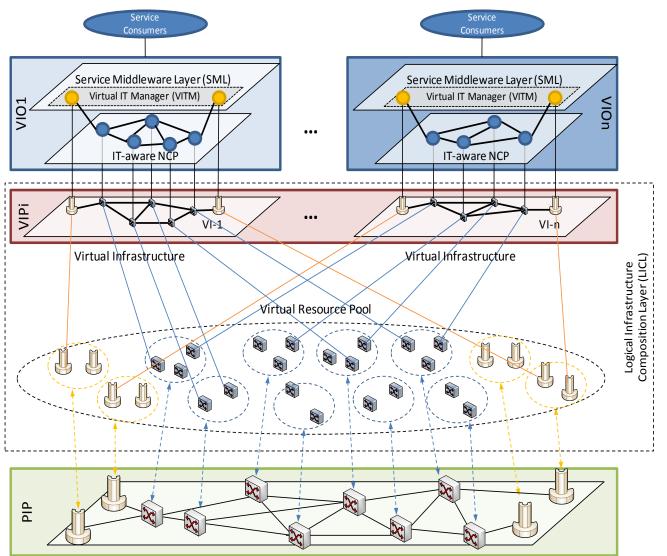
- Data encryption
- Digital signature
- Authentication
- Authorization
- Policy management
- Security session and context management


CSSI – Common Security Services Interface

AAI Reference Model (GEYSERS)



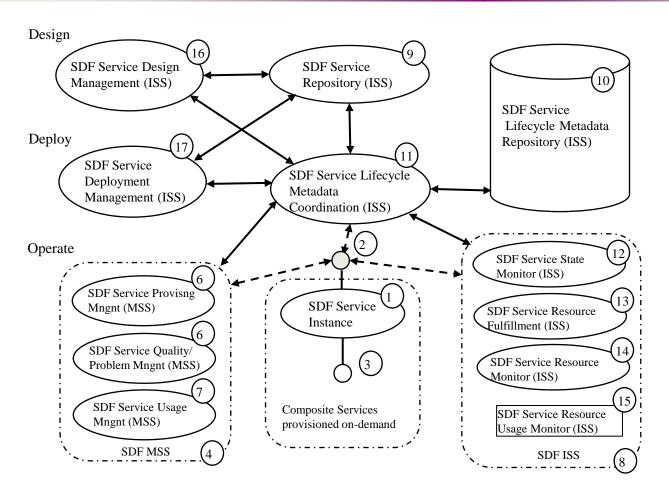
PEP: Policy Enforcement Point PDP: Policy Decision Point PAP: Policy Administration Point DACS: Dynamic Access Control Service


AAI in GEYSERS: Multi-domain and Multi-layer Environment

GEYSERS Reference Model

Role of GEYSERS actors with respect to its architectural layers

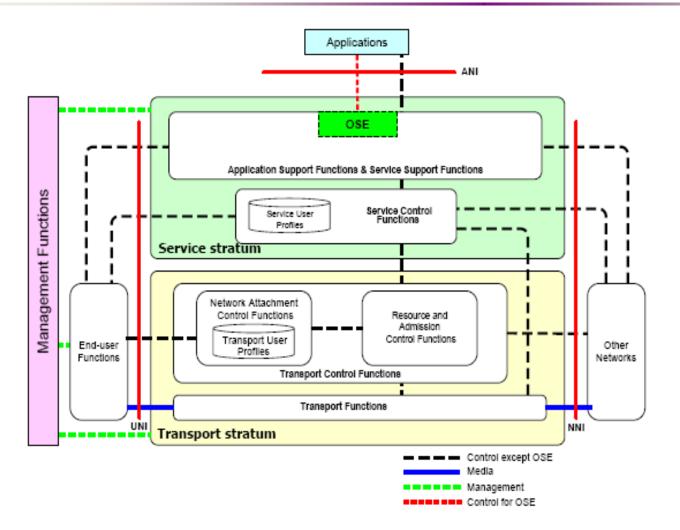
TMF Service Delivery Framework (SDF)


Main goal – automation of the whole service delivery and operation process (TMF, http://www.tmforum.org/), including

- End-to-end service management in a multi-service providers environment
- End-to-end service management in a composite, hosted and/or syndicated service environment
- Management functions to support a highly distributed service environment, for example unified or federated security, user profile management, charging etc.
- Any other scenario that pertains to a given phase of the service lifecycle challenges, such as on-boarding, provisioning, or service creation

Service Delivery Lifecycle

SDF Reference Architecture (refactored from TMF SDF)



- 1 Service Instance
- 2 Service Management Interface
- 3 Service Functional Interface
- 4 Management Support Service (SDF MSS)
- 8 Infrastructure Support Service (ISS)
- DESIGN stage
- 9 Service Repository
- 10 Service Lifecycle Metadata Repository
- 16 Service Design Management DEPLOYMENT stage
- 10 Service Lifecycle Metadata Repository
- 11 Service Lifecycle Metadata Coordinator
- 17 Service Deployment Management OPERATION stage
- 5 Service Provisioning Management
- 6 Service Quality/Problem Management
- 7 Service Usage Monitor
- 12 Service State Monitor
- 13 Service Resource Fulfillment
- 14 Service Resource Monitor
- 15 Resource Usage Monitor

ITU-T NGN Open Service Environment

- ITU-T REC Y.2232 (01/2008) NGN convergence service model and scenario using Web Services
- ITU-T REC Y.2234 (09/2008) Open service environment capabilities for NGN
- ITU-T REC Y.2701 (04/2007) Security requirements for NGN release 1
 - Security requirements to NGN and its interfaces (e.g., UNI, NNI, ANI) by applying X.805
 - Uses trust model based on NE supporting the functional Y.2012 entities
- ITU-T REC Y.2012 (09/2006) Functional requirements and architecture of the NGN release 1
- ITU-T REC Y.2011 (10/2004) General principles and general reference model for Next Generation Networks
- ITU-T REC Y.110 (06/98) Global Information Infrastructure principles and framework architecture
- ITU-T REC Y.2201 (04/2007) NGN release 1 requirements

T-REC-Y.2234-200809 Open service environment capabilities for NGN (1)

•Extended NGN architecture positioning the OSE

Cloud Security Workshop -