EDISON
Data Science Competence Framework (CF-DS)

Yuri Demchenko, EDISON
University of Amsterdam

CORBEL Workshop: Addressing the skills gaps in technical operation of biomedical research infrastructures

17-18 February 2016, EMBL, Hinxton
Outline

• EDISON Project approach
 – From Data Science Competences to Body of Knowledge and Model Curriculum

• Background: Existing frameworks and standards
 – e-CF3.0 overview and analysis
 – CWA ICT profiles and mapping to e-CF3.0

• Data Science essential competences and skills
 – Used approach and data/information selection

• Organisational processes and role of Data Scientist

• Further steps - Survey and questionnaires
EDISON methodology: Development flow, work packages, and products

Data research community
- Companies, e-infrastructures, research infrastructures

Existing education
- Current IT courses, related professional education

Policy & community groups
- e.g. RDA, EC, ETSI

Standards groups
- Existing ontologies, bodies of knowledge and standards

Existing education
- Current IT courses, related professional education

Professional education groups
- Certification bodies, professional associations

Universities
- Curricula structures, accreditation requirements, national policies

User feedback
- EDISON pilots, later implementations, student feedback, changing industry needs

Sustainability vehicles
- Association and non profits, national and European agencies

Gather
- Experience, needs, problems, changes

Synthesise
- Gather, organise, collate and synthesise frameworks and sets of knowledge

Implement
- Plans, model curricula, pilot implementations, guidance

Sustain
- Monitor, maintain, update, support, improve

Roadmap & Sustainability

- WP2: Educational Focus and Data Science Body of Knowledge (BoK)
- WP3: Development and Reference Implementation Strategy
- WP4: Sustainability and certification of the Data Scientist Profession
- WP5: Dissemination and Engagement
- WP1: Coordination and Management

CF-DS
Tax&Inventory

DS-BoK

MC-DS
EOEE & ETMp
Background: EU Competence Frameworks and Profiles

- e-CFv3.0 - European e-Competence framework for IT
- CWA 16458 (2012): European ICT Professional Profiles Family Tree
- ESCO (European Skills, Competences, Qualifications and Occupations) framework
EDISON Approach: e-CFv3.0 and CF-DS

- Competence Framework for Data Science (CF-DS) definition will be built based on European e-Competence framework for IT (e-CFv3.0)
 - Linking scientific research cycle/flow, organizational roles, competences, skills and knowledge
 - Defining Data Science Body of Knowledge (DS-BoK)
 - Mapping CF-DS and DS-BoK to academic disciplines in a DS Model Curriculum (MC-DS)

- Multiple use of e-CFv3.0 within ICT organisations
- Provides basis for individual career path, competence assessment, training and certification

- EDISON CF-DS will be used for defining DS-BoK and MC-DS, linking organizational functions and required knowledge
- Provide basis for individual (self) training and certification
European e-Competence Framework 3.0 Overview

<table>
<thead>
<tr>
<th>Dimension 1</th>
<th>Dimension 2</th>
<th>Dimension 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 e-CF areas (A–E)</td>
<td>40 e-Competences identified</td>
<td>e-Competence proficiency levels e-1 to e-5, related to IQP levels 3–8</td>
</tr>
</tbody>
</table>

A. PLAN
- A.1. IS and Business Strategy Alignment
- A.2. Service Level Management
- A.3. Business Plan Development
- A.5. Architecture Design
- A.6. Application Design
- A.7. Technology Trend Monitoring
- A.8. Sustainable Development
- A.9. Innovating

B. BUILD
- B.1. Application Development
- B.2. Component Integration
- B.3. Testing
- B.4. Solution Deployment
- B.5. Documentation Production
- B.6. Systems Engineering

C. RUN
- C.1. User Support
- C.2. Change Support
- C.3. Service Delivery
- C.4. Problem Management

D. ENABLE
- D.1. Information Security Strategy Development
- D.2. ICT Quality Strategy Development
- D.3. Education and Training Provision
- D.4. Purchasing
- D.5. Sales Proposal Development
- D.6. Channel Management
- D.7. Sales Management
- D.8. Contract Management
- D.9. Personnel Development
- D.10. Information and Knowledge Management
- D.11. Needs Identification
- D.12. Digital Marketing

E. MANAGE
- E.1. Forecast Development
- E.2. Project and Portfolio Management

Key Points:

- **4 Dimensions**
 - Competence Areas
 - Competences
 - Proficiency levels
 - Skills and Knowledge

- **5 Competence Area defined by ICT Business Process stages**
 - Plan
 - Build
 - Run
 - Enable
 - Manage

- Refactor to Scientific Research cycle/workflow (and linked to Scientific Data Lifecycle)
 - See example of RI manager at IG-ETRD wiki and meeting

- Each competence has 5 proficiency level
 - Ranging from technical to engineering to management to strategist/expert level

- Knowledge and skills property are defined for/by each competence and proficiency level (not unique)
Definitions (according to e-CFv3.0)

- **Competence** is a demonstrated ability to apply knowledge, skills and attitudes for achieving observable results.
 - Competence vs Competency (e-CF vs ACM)
 - Competence is ability acquired by training or education (linked to learning outcome)
 - Competency is similar to skills or experience (acquired feature of a person)
 - Competence can be treated as outcome of learning or training

- **Knowledge** in the context of competence definition is treated as something to know, to be aware of, familiar with, and obtained as a part of education.

- **Skills** is treated as provable ability to do something and relies on the person’s experience.
Demanded Data Science Competences and Skills: Jobs market analysis

• Sources (period Aug – Sept 2015)
 – IEEE Data Science Jobs (World but majority US) (collected > 120, selected for analysis > 30)
 – LinkedIn Data Science Jobs (NL) (collected > 140, selected for analysis > 30)
 – Existing studies and reports + numerous blogs

• Analysis methods
 – Using manually data analytics methods: classification, clustering, expert evaluation
 – Research methods: Data collection - Hypothesis – Artefact - Evaluation

• Observations
 – Many job ads don’t use Data Scientist as a definite profession
 • Data Science competences/skills are specified as part of traditional ICT professions/positions
 – Many academic openings are without specified skills profile
 – Explicit Data Scientist jobs specify wide variety of expected functions/responsibilities and required skills and knowledge
Identified Data Science Competence Groups

- Traditional/known Data Science competences/skills groups include:
 - Data Analytics or Business Analytics or Machine Learning
 - Engineering or Programming
 - Subject/Scientific Domain Knowledge

- EDISON identified 2 additional competence groups demanded by organisations:
 - Data Management, Curation, Preservation
 - Scientific or Research Methods and vs Business Processes/Operations

- Other skills commonly recognized aka “soft skills” or “social intelligence”
 - Inter-personal skills or team work, cooperativeness

- All groups need to be represented in Data Science curriculum and training
 - Challenging task for Data Science education and training

- Another aspect of integrating Data Scientist into organisation structure
 - General Data Science (or Big Data) literacy for all involved roles and management
 - Common agreed way of communication and information/data presentation
 - Role of Data Scientist: Provide such literacy advice and guiding to organisation
Data Science Competence Groups - Research

Data Science Competence includes 5 areas/groups:
- Data Analytics
- Data Science Engineering
- Domain Expertise
- Data Management
- Scientific Methods (or Business Process Management)

Scientific Methods
- Design Experiment
- Collect Data
- Analyse Data
- Identify Patterns
- Hypothesise Explanation
- Test Hypothesis

Business Operations
- Operations Strategy
- Plan
- Design & Deploy
- Monitor & Control
- Improve & Re-design
Data Science Competence includes 5 areas/groups

- Data Analytics
- Data Science Engineering
- Domain Expertise
- Data Management
- Scientific Methods (or Business Process Management)

Scientific Methods

- Design Experiment
- Collect Data
- Analyse Data
- Identify Patterns
- Hypothesise Explanation
- Test Hypothesis

Business Process Operations/Stages

- Design
- Model/Plan
- Deploy & Execute
- Monitor & Control
- Optimise & Re-design
<table>
<thead>
<tr>
<th>Identified Data Science Competence Groups</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Data Analytics (DA)</th>
<th>Data Management/ Curation (DM)</th>
<th>DS Engineering (DSE)</th>
<th>Search Methods (DSRM) scientific/Re</th>
<th>DS Domain Knowledge (including Business Apps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Use appropriate statistical techniques on available data to deliver insights</td>
<td>Develop and implement data strategy</td>
<td>Use engineering principles to research, design, or develop structures, instruments, machines, experiments, processes, systems, theories, or technologies</td>
<td>Create new understandings and capabilities by using the scientific method's hypothesis, test, and evaluation techniques; critical review; or similar engineering research and development methods</td>
<td>Understand business and provide insight, translate unstructured business problems into an abstract mathematical framework</td>
</tr>
<tr>
<td>2 Use predictive analytics to analyse big data and discover new relations</td>
<td>Develop models including metadata</td>
<td>Develops specialized data analysis tools to support executive decision making</td>
<td>Direct systematic study toward a fuller knowledge or understanding of the fundamental aspects of phenomena and of observable facts, and discovers new approaches to achieve goals</td>
<td>Use data to improve existing services or develop new services</td>
</tr>
<tr>
<td>3 Research and analyze complex data sets, combine different sources and types of data to improve analysis.</td>
<td>Integrate different data source and provide for further analysis</td>
<td>Design, build, operate relational non-relational databases</td>
<td>Undertakes creative work, making systematic use of investigation or experimentation, to discover or revise knowledge of reality, and uses this knowledge to devise new applications</td>
<td>Participate strategically and tactically in financial decisions that impact management and organizations</td>
</tr>
<tr>
<td>4 Develop specialized analytics to enable agile decision making</td>
<td>Develop and maintain a historical data repository of analysis</td>
<td>Develop and apply computational solutions to domain related problems using wide range of data analytics platforms</td>
<td>Apply ingenuity to complex problems, develop innovative ideas</td>
<td>Recommends business related strategic objectives and alternatives and implements them</td>
</tr>
<tr>
<td>5 Collect and manage different source of data</td>
<td>Collect and manage different source of data</td>
<td>Develop solutions for secure and reliable data access</td>
<td>Ability to translate strategies into action plans and follow through to completion.</td>
<td>Provides scientific, technical, and analytic support services to other organisational roles</td>
</tr>
<tr>
<td>6 Visualise complex and variable data.</td>
<td>Develop algorithms to analyse multiple source of data</td>
<td>Analyse multiple data sources for marketing purposes</td>
<td>Influences the development of organizational objectives</td>
<td>Analyse customer data to identify/optimise customer relations actions</td>
</tr>
<tr>
<td>7</td>
<td>Prototype new data analytics applications</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Identified Data Science Skills/Experience Groups

- Skills/experience related to competences
 - Data Analytics and Machine Learning
 - Data Management/Curation (including both general data management and scientific data management)
 - Data Science Engineering (hardware and software) skills
 - Scientific/Research Methods
 - Personal, inter-personal communication, team work (also called social intelligence or soft skills)
 - Application/subject domain related (research or business)
 - Mathematics and Statistics

- Big Data (Data Science) tools and platforms
 - Big Data Analytics platforms
 - Math & Stats tools
 - Databases (SQL and NoSQL)
 - Data Management and Curation platform
 - Data and applications visualisation
 - Cloud based platforms and tools

- Programming and programming languages and IDE
 - General and specialized for data analysis and statistics
Identified Data Science Skill Groups

<table>
<thead>
<tr>
<th>Identified Data Science Skill Groups</th>
<th>Application/subject domain (research or business)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Analytics and Machine Learning</td>
<td>Data Management/ Curation</td>
<td>Data Science Engineering (hardware and software)</td>
</tr>
<tr>
<td>1</td>
<td>Artificial intelligence, machine learning</td>
<td>Manipulating and analyzing complex, high-volume, high-dimensionality data from varying sources for data improvement</td>
</tr>
<tr>
<td>2</td>
<td>Machine Learning and Statistical Modelling</td>
<td>Data models and datatypes</td>
</tr>
<tr>
<td>3</td>
<td>Machine learning solutions and pattern recognition techniques</td>
<td>Handling vast amounts of data</td>
</tr>
<tr>
<td>4</td>
<td>Supervised and unsupervised learning</td>
<td>Experience of working with large data sets</td>
</tr>
<tr>
<td>5</td>
<td>Data mining</td>
<td>(non)relational and (un)-structured data</td>
</tr>
<tr>
<td>6</td>
<td>Markov Models, Conditional Random Fields</td>
<td>Logistic Regression, Support Vector Machines</td>
</tr>
<tr>
<td>7</td>
<td>Predictive analysis and statistics (including Kaggle platform)</td>
<td>Cloud based data storage and data management</td>
</tr>
<tr>
<td>8</td>
<td>(Artificial) Neural Networks</td>
<td>Metadata annotation and management</td>
</tr>
<tr>
<td>9</td>
<td>Statistics</td>
<td>Data citation, metadata, PID (*)</td>
</tr>
</tbody>
</table>
Identified Big Data Tools and Programming Languages

<table>
<thead>
<tr>
<th>Big Data Analytics platforms</th>
<th>Math& Stats tools</th>
<th>Databases</th>
<th>Data/ applications visualization</th>
<th>Data Management and Curation platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Big Data Analytics platforms</td>
<td>Advanced analytics tools (R, SPSS, Matlab, etc)</td>
<td>SQL and relational databases</td>
<td>Data visualization Libraries (D3.js, FusionCharts, Chart.js, other)</td>
<td>Data modelling and related technologies (ETL, OLAP, OLTP, etc)</td>
</tr>
<tr>
<td>2 Big Data tools (Hadoop, Spark, etc)</td>
<td>Data Mining tools: RapidMiner, others</td>
<td>NoSQL Databases</td>
<td>Visualisation software (D3, Processing, Tableau, Gephi, etc)</td>
<td>Data warehouses platform and related tools</td>
</tr>
<tr>
<td>3 Distributed computing tools a plus (Spark, MapReduce, Hadoop, Hive, etc.)</td>
<td>Mathlab</td>
<td>NoSQL, Mongo, Redis</td>
<td>Online visualization tools (Datawrapper, Google Charts, Flare, etc)</td>
<td>Data curation platform, metadata management (ETL, Curator's Workbench, DataUp, MIXED, etc)</td>
</tr>
<tr>
<td>4 Real time and streaming analytics systems (like Flume, Kafka, Storm)</td>
<td>Python</td>
<td>NoSQL, Teradata</td>
<td></td>
<td>Backup and storage management (iRODS, XArch, Nesstar, others)</td>
</tr>
<tr>
<td>5 Hadoop Ecosystem/platform</td>
<td>R, Tableau</td>
<td>R, Excel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Spotfire</td>
<td>SAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Azure Data Analytics platforms (HDInsight, APS and PDW, etc)</td>
<td>Scripting language, e.g. Octave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Amazon Data Analytics platform (Kinesis, EMR, etc)</td>
<td>Statistical tools and data mining techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Other cloud based Data Analytics platforms (HortonWorks, Vertica, LexisNexis HPCC System, etc)</td>
<td>Other Statistical computing and languages (WEKA, KNIME, IBM SPSS, etc)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Big Data Analytics platforms**
- **Math& Stats tools**
- **Databases**
- **Data/applications visualization**
- **Data Management and Curation platform**
Suggested e-CF extensions for DS

A. PLAN and Design
- A.10* Organisational workflow/processes model definition/formalisation
- A.11* Data models and data structures

B. BUILD: Develop and Deploy/Implement
- B.7* Apply data analytics methods (to organizational processes/data)
- B.8* Data analytics application development
- B.9* Data management applications and tools
- B.10* Data Science infrastructure deployment

C. RUN: Operate
- C.5* User/Usage data/statistics analysis
- C.6* Service delivery/quality data monitoring

D. ENABLE: Use/Utilise
- D10. Information and Knowledge Management (powered by DS)
- D.13* Data presentation/visualisation, actionable data extraction
- D.14* Support business processes/roles with data and insight (support to D.5, D.6, D.7, D.12)
- D.15* Data management/preservation/curation with data and insight

E. MANAGE
- E.10* Support Management and Business Improvement with data and insight (support to E.5, E.6)
- E.11* Data analytics for (business) Risk Analysis/Management (support to E.3)
- E.12* ICT and Information security monitoring and analysis (support to E.8)
Possible Data Scientist profiles/roles (as extension to CWA16458 (2012) or ESCO)

• Data Analytics
 – Data Mining
 – Machine Learning

• Data Management
 – Digital Librarian, Data Archivist, Data Curator, Data Steward

• Data Science Engineering
 – Data Analytics applications development
 – Scientific programmer
 – Data Science/Big Data Infrastructure engineer/developer/operator

• Data Science Researcher
 – Data Science creative
 – Data Science consultant/Analyst

• Business Analyst

• Data Scientist in subject/research domain

• Research e-Infrastructure brings its own specifics to required competences and skills definition
Data Scientist and Subject Domain Specialist

• **Subject domain components**
 - Model (and data types)
 - Methods
 - Processes
 - Domain specific data and presentation/visualization methods
 - Organisational roles and relations

• **Data Scientist is an assistant to Subject Domain Specialists**
 - Translate subject domain Model, Methods, Processes into abstract data driven form
 - Implement computational models in software, build required infrastructure and tools
 - Do (computational) analytic work and present it in a form understandable to subject domain
 - Discover new relations originated from data analysis and advice subject domain specialist
 - Interact and cooperate with different organizational roles to obtain data and deliver results and/or actionable data
Data Science and Subject Domains

Data Science domain components

- Data structures & databases/storage
- Cross-organisational assistive role
- Abstract data driven math&compute models
- Data Analytics methods
- Data and Applications Lifecycle Management

Domain specific components

- Domain specific data & presentation
- Models (and data types)
- Methods
- Processes

Data Scientist functions is to translate between two domains
EXAMPLE: Use of e-CF3.0 for Defining Profile of RI Technical (part of RDA IG-ETRD work)

A. PLAN and DESIGN
 A.2. Service Level Management
 A.3. Product / Service Planning
 A.5. Application Design
 A.4. Architecture Design
 Additional
 A.6. Sustainable Development
 A.7. Innovating and Technology Trend Monitoring
 A.8. Business/Research Plan Development and Grant application
 A.1. RI and Research Strategy Alignment

B. BUILD: DEVELOP and DEPLOY/IMPLEMENT
 B.1. Application Development (Reqs Engineering, Function Specs, API, HCI)
 B.2. Component Integration
 B.3. Testing (RI services and Scientific Apps)
 B.4. Solution/Apps Deployment
 Additional
 B.5. Documentation Production
 B.6. Systems Engineering (DevOps)

C. OPERATE (RUN)
 C.1. User Support
 C.2. Service Delivery
 C.3. Problem Management
 Additional
 C.4. Change Support (Upgrade/Migration)

D. USE: UTILISE (ENABLE)
 D.1. Scientific Applications Integration (on running RI)
 D.5. Data collection and preservation
 D.4. New requirements and change Identification
 D.6. Education and Training Provision
 Additional
 D.2. Information Security Strategy Development
 D.3. RI/ICT Quality Strategy Development
 D.7. Purchasing/Procurement
 D.8. Contract Management
 D.9. Personnel Development
 D.10. Dissemination and outreach

E. MANAGE
 E.1. Overall RI management (by systems and components)
 E.5. Information/Data Security Management
 Additional
 E.6. Data Management (including planning and lifecycle management, curation)
 E.4. RI Security and Risk/Dependability Management
 E.2. Project and Portfolio Management
 E.3. ICT Quality Management and Compliance
 E.7. RI/IS Governance
Further Steps

• Define a taxonomy and classification for DS competences and skills as a basis for more formal CF-DS definition
 – Closer look at skills, tools and platforms
• Create a Questionnaire and run Survey using CF-DS vocabulary
 – Run surveys for target communities
 https://www.surveymonkey.com/r/EDISON_project_-_Defining_Data_science_profession
 – Plan a number of key interviews, primarily experts and top executives at universities and companies
• Proceed with suggested e-CF3.0 extensions and participate in the next e-CF meetings
 – Talk to national e-CF bodies or adopters if available
• Provide feedback and contribution to ESCO
• Suggest ACM2012 Classification extensions and contact ACM people
• Provide input to DS-BoK definition following from CF-DS
 – Link/Map to taxonomy of academic and educational and training courses
• Create open community forum to collect contribution
 – CF-DS document is on public comments available from EDISON website
 – Start related Social Network groups to promote already obtained results and obtain feedback and community contribution
EDISON project: Defining Data science profession

Data Analytics skills and competencies for data science profession

<table>
<thead>
<tr>
<th>Level of Competency</th>
<th>Use appropriate statistics to provide insight on data</th>
<th>Use appropriate techniques for analyzing data (A/B Testing, Association rule Learning, Crowdsourcing, Data fusion and Integration, Data Mining, Ensemble learning, Machine learning)</th>
<th>Use Predictive analytics to analyse big data and discover new relations</th>
<th>Research and analyse complex data sets, combine different sources of data to improve analysis</th>
<th>Develop specialised analytics to enable agile decision making</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factual and theoretical knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive factual and theoretical knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced knowledge of a field, critical understanding of theories and principles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly specialized knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical awareness between different fields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge at the most advanced frontier of a field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>