

EDISON Data Science Competence Framework (CF-DS)

EDISON – Education for Data Intensive Science to Open New science frontiers

Yuri Demchenko University of Amsterdam

EDISON Workshop on Data Infrastructure Competences and Skills 9 February 2016, Brussels

Grant 675419 (INFRASUPP-4-2015: CSA)

- EDISON Project approach
 - From Data Science Competences to Body of Knowledge and Model Curriculum
- Background: Existing frameworks and standards
 - e-CF3.0 overview and analysis
 - CWA ICT profiles and mapping to e-CF3.0
- Data Science essential competences and skills
 - Used approach and data/information selection
- Organisational processes and role of Data Scientist
- Further steps Survey and questionnaires

Objective 1: Data Science Curricula Foundation

Promote the creation of *Data Scientists curricula* by an increasing number of universities and professional training organisations.

The **Data Science Competence Framework (CF-DS)** including Taxonomy of competences and skills, compliant with e-CF3.0.

The **Body of Knowledge (BoK) for the Data Science (DS-BoK)** that will map required competencies/skills and existing academic, research and technology disciplines

A **Model Curriculum for Data Science (MC-DS)** as a template for building customisable Data Science curricula based on the proposed CF-DS and DS-BoK.

Objective 2: Education and Training Environment

Provide environment for *re-skilling* and *certifying* Data Scientists expertise to graduates, practitioners and researchers throughout their careers.

Create EDISON Online Education Environment (EOEE) powered by Education and Training Marketplace (ETMp) leveraging EGI Engage Training Marketplace.

Objective 3: Sustainability Model

Develop a **sustainable business model** and a **roadmap** for European education and training on Data Science competences and skills, provide a basis for the formal recognition of the Data Scientist as a new profession

Establish networks and community of champion universities.

Create Community of practice for sustainable Data Science education and training supported by EDISON Liaison Group(s)

Basic methodology of EDISON: Development flow, work packages, and products

Background EU Competence Frameworks and Profiles

- e-CFv3.0 European e-Competence framework for IT
- CWA 16458 (2012): European ICT Professional Profiles Family Tree
- ESCO (European Skills, Competences, Qualifications and Occupations) framework

EDISON Approach: e-CFv3.0 and CF-DS

- Competence Framework for Data Science (CF-DS) definition will be built based on European e-Competence framework for IT (e-CFv3.0)
 - Linking scientific research lifecycle, organizational roles, competences, skills and knowledge
 - Defining Data Science Body of Knowledge (DS-BoK)
 - Mapping CF-DS and DS-BoK to academic disciplines in a DS Model Curriculum (MC-DS)

- Multiple use of e-CFv3.0 within ICT organisations
- Provides basis for individual career path, competence assessment, training and certification
- EDISON CF-DS will be used for defining DS-BoK and MC-DS, linking organizational functions and required knowledge
- Provide basis for individual (self) training and certification

e-CFv3.0 Internal Structure: Refactoring for CF-DS

European e-Competence Framework 3.0 overview

Dimension 1 5 e-CF areas (A – E)	Dimension 2 40 e-Competences identified	Dimension 3 e-Competence proficiency levels e-1 to e-5, related to EQF levels 3–8				
		e-1	e-2	e-3	e-4	e-5
A. PLAN	A.1. IS and Business Strategy Alignment					
	A.2. Service Level Management					
	A.3. Business Plan Development					
	A.4. Product/Service Planning					
	A.5. Architecture Design					
	A.6. Application Design					
	A.7. Technology Trend Monitoring					
	A.8. Sustainable Development					
	A.9. Innovating					
B. BUILD	B.1. Application Development					
	B.2. Component Integration					
	B.3. Testing					
	B.4. Solution Deployment					
	B.5. Documentation Production					
	B.6. Systems Engineering					
C. RUN	C.1. User Support					
	C.2. Change Support					
	C.3. Service Delivery					
	C.4. Problem Management					
D. ENABLE	D.1. Information Security Strategy Development					
	D.2. ICT Quality Strategy Development					
	D.3. Education and Training Provision					
	D.4. Purchasing					
	D.5. Sales Proposal Development					
	D.6. Channel Management					
	D.7. Sales Management					
	D.8. Contract Management					
	D.9. Personnel Development					
	D.10. Information and Knowledge Management					
	D.11. Needs Identification					
	D.12. Digital Marketing					
E. MANAGE	E.1. Forecast Development					
	E.2. Project and Portfolio Management					

- 4 Dimensions
 - Competence Areas
 - Competences
 - Proficiency levels
 - Skills and Knowledge
- 5 Competence Area defined by ICT Business Process stages
 - Plan
 - Build
 - Run
 - Enable
 - Manage
- Refactor to Scientific Research cycle/workflow (and linked to Scientific Data Lifecycle)
 - See example of RI manager at IG-ETRD wiki and meeting
- Each competence has 5 proficiency level
 - Ranging from technical to engineering to management to strategist/expert level
- Knowledge and skills property are defined for/by each competence and proficiency level (not unique)

Definitions (according to e-CFv3.0)

- Competence is a demonstrated ability to apply knowledge, skills and attitudes for achieving observable results.
 - Competence vs Competency (e-CF vs ACM)
 - Competence is ability acquired by training or education (linked to learning outcome)
 - Competency is similar to skills or experience (acquired feature of a person)
- Competence is not to be confused with process or technology concepts such as, 'Cloud Computing' or 'Big Data'. These descriptions represent evolving technologies and in the context of the e-CF, they may be integrated as elements within knowledge and skill examples.
- Knowledge in the context of competence definition is treated as something to know, to be aware of, familiar with, and obtained as a part of education.
- Skills is treated as provable ability to do something and relies on the person's experience.

EDISON CF-DS profile(s) and e-CF3.0

Edison Profile(s) For Data Science

- 1. Define **CF-DS profile** using input from
 - a. Demand/Jobs market
 - b. Surveys, Interview
 - c. Questionnaires
 - d. DS programmes
- 2. Map required

 background ICT

 competences from e
 CF3.0 and ICT

 profiles
- 3. Identify required extensions to e-CF3.0

CWA 16458 (2012): European ICT Professional Profiles Family Tree

European ICT Profile Family Tree – Generation 1 and 2 as a shared European reference

Mapping between e-CF3.0 and European ICT Profiles

 European ICT Professional Profiles structured by six families and positioned within the ICT Business Process (e-CF Dimension 1)

EDISON Data Science Competence Framework

- How it was made
- 5 main Data Science competences groups
- Skills, tools and languages
- Suggested extensions and identified profiles
- Example: Technical RI competences

Demanded Data Science Competences and Skills: Jobs market analysis

- Source (period Aug Sept 2015)
 - IEEE Data Science Jobs (World but majority US) (collected > 120, selected for analysis > 30)
 - LinkedIn Data Science Jobs (NL) (collected > 140, selected for analysis > 30)
 - Existing studies and reports + numerous blogs
- Analysis methods
 - Using manually data analytics methods: classification, clustering, expert evaluation
 - Research methods: Data collection Hypothesis Artefact Evaluation
- Observations
 - Many job ads don't use Data Scientist as a definite profession:
 - Data Science competences/skills are specified as part of traditional ICT professions/positions
 - Many academic openings without specified skills profile
 - Explicit Data Scientist jobs specify wide variety of expected functions/responsibilities and required skills and knowledge

Identified Data Science Competence Groups

- Traditional/known Data Science skills/knowledge profiles include
 - Data Analytics or Business Analytics or Machine Learning
 - Engineering or Programming
 - Subject/Scientific Domain Knowledge
- EDISON identified 2 additional competence groups demanded by organisations
 - Data Management, Curation, Preservation
 - Scientific or Research Methods and/vs Business Processes/Operations
- Other skills commonly recognized aka "soft skills" or "social intelligence"
 - Inter-personal skills or team work, cooperativeness
- All groups need to be represented in Data Science curriculum and training
 - Challenging task for Data Science education and training
- Another aspect of integrating Data Scientist into organisation structure
 - General Data Science (or Big Data) literacy for all involved roles and management
 - Common agreed way of communication and information/data presentation
 - Role of Data Scientist: Provide such literacy advice and guiding to organisation

[ref] Legacy: NIST BDWG definition of Data Science

Data Science Competence Groups - Research

Data Science Competence

Scientific Methods

- **Design Experiment**
- **Identify Patterns**
- Hypothesise Explanation
- **Test Hypothesis**

Business Operations

- **Operations Strategy**
- Design & Deploy
- Monitor & Control
- Improve & Re-design

Data Science Competences Areas – Business e-CF areas

Data Science Competence includes 5 areas/groups

- Data Analytics
- Data Science Engineering
- Domain Expertise
- Data Management
- Scientific Methods (or Business Process Management)

Scientific Methods

- Design Experiment
- Collect Data
- Analyse Data
- Identify Patterns
- Hypothesise Explanation
- Test Hypothesis

Business Process Operations/Stages

- Design
- Model/Plan
- Deploy & Execute
- Monitor & Control
- Optimise & Re-design

Identified Data Science Competence Groups

	Data Analytics (DA)	Data Management/ Curation (DM)	DS Engineering (DSE)	Ssearch Methods (DSRM) cientific/Re	DS Domain Knowledge (including Business Apps)
1	Use appropriate statistical techniques on available data to deliver insights	-	Use engineering principles to research, design, or develop structures, instruments, machines, experiments, processes, systems, theories, or technologies	Create new understandings and capabilities by using the scientific method's hypothesis, test, and evaluation techniques; critical review; or similar engineering research and development methods	Understand business and provide insight, translate unstructured business problems into an abstract mathematical framework
2		Develop data models including metadata	Develops specialized data analysis tools to support executive decision making	Direct systematic study toward a fuller knowledge or understanding of the fundamental aspects of phenomena and of observable facts, and discovers new approaches to achieve goals	Use data to improve existing services or develop new services
3	complex data sets,	Integrate different data source and provide for further analysis	Design, build, operate relational databases	Undertakes creative work, making systematic use of investigation or experimentation, to discover or revise knowledge of reality, and uses this knowledge to devise new applications	Participate strategically and tactically in financial decisions that impact management and organizations
4	analytics to enable	a historical data	Develop and apply computational solutions to domain related problems using wide range of data analytics platforms	Apply ingenuity to complex problems, develop innovative ideas	Recommends business related strategic objectives and alternatives and implements them
5		Collect and manage different source of data	Develop solutions for secure and reliable data access	Ability to translate strategies into action plans and follow through to completion.	Provides scientific, technical, and analytic support services to other organisational roles
6		Visualise complex and variable data.	Develop algorithms to analyse multiple source of data	Influences the development of organizational objectives	Analyse multiple data sources for marketing purposes
7 Ws	sh Data Comp&Skills		Prototype new data analytics applications EDISON CF-I		Analyse customer data to identify/optimise customer relations actions

Identified Data Science Skills/Experience Groups

- Skills/experience related to competences
 - Data Analytics and Machine Learning
 - Data Management/Curation (including both general data management and scientific data management)
 - Data Science Engineering (hardware and software) skills
 - Scientific/Research Methods
 - Personal, inter-personal communication, team work (also called social intelligence or soft skills)
 - Application/subject domain related (research or business)
 - Mathematics and Statistics
- Big Data (Data Science) tools and platforms
 - Big Data Analytics platforms
 - Math& Stats tools
 - Databases (SQL and NoSQL)
 - Data Management and Curation platform
 - Data and applications visualisation
 - No cloud related skills and knowledge mentioned explicitly To be included
- Programming and programming languages and IDE
 - General and specialized for data analysis and statistics
- Interpersonal skills (social intelligence)

Identified Data Science Skill Groups

/						
	Data Analytics and Machine Learning	Data Management/ Curation	Data Science Engineering (hardware and software)	Scientific/ Research Methods	Personal/Inter- personal communication, team work	Application/subject domain (research or business)
1	Artificial intelligence, machine learning	Manipulating and analyzing complex, high-volume, high-dimensionality data from varying sources	Design efficient algorithms for accessing and analyzing large amounts of data	Interest in data science	Communication skills	Recommender or Ranking system
2	Machine Learning and Statistical Modelling	for data improvement	Big Data solutions and advanced data mining tools	Analytical, independent, critical, curious and focused on results	Inter-personal intra- team and external communication	Data Analytics for commercial purposes
3	Machine learning solutions and pattern recognition techniques	Data models and datatypes	Multi-core/distributed software, preferably in a Linux environment	Confident with large data sets and ability to identify appropriate tools and algorithms	Network of contacts in Big Data community	Data sources and techniques for business insight and customer focus
4	Supervised and unsupervised learning	Handling vast amounts of data	Databases, database systems, SQL and NoSQL	Flexible analytic approach to achieve results at varying levels of precision		Mechanism Design and/or Latent Dirichlet Allocation
5	Data mining	Experience of working with large data sets	Statistical analysis languages and tooling	Exceptional analytical skills		Game Theory
6	Markov Models, Conditional Random Fields	(non)relational and (un)- structured data	Cloud powered applications design			Copyright and IPR
7	Logistic Regression, Support Vector Machines	Cloud based data storage and data management				
8	Predictive analysis and statistics (including Kaggle platform)	Data management planning				
9	(Artificial) Neural Networks	Metadata annotation and management				
10	Statistics	Data citation, metadata, PID (*)				19

Identified Big Data Tools and Programming Languages

	Big Data Analytics platforms	Math& Stats tools	Databases	Data/ applications visualization	Data Management and Curation platform
1	Big Data Analytics platforms	Advanced analytics tools (R, SPSS, Matlab, etc)	SQL and relational databases	Data visualization Libraries (D3.js, FusionCharts, Chart.js, other)	Data modelling and related technologies (ETL, OLAP, OLTP, etc)
2	Big Data tools (Hadoop, Spark, etc)	Data Mining tools: RapidMiner, others	NoSQL Databases	Visualisation software (D3, Processing, Tableau, <u>Gephi</u> , etc)	Data warehouses platform and related tools
3	Distributed computing tools a plus (Spark, MapReduce, Hadoop, Hive, etc.)	Mathlab	NoSQL, Mongo, Redis	Online visualization tools (Datawrapper, Google Charts, Flare, etc)	Data curation platform, metadata management (ETL, Curator's Workbench, DataUp, MIXED, etc)
4	Real time and streaming analytics systems (like Flume, Kafka, Storm)	Python	NoSQL, Teradata		Backup and storage management (iRODS, XArch, Nesstar, others
5	Hadoop Ecosystem/platform	R, Tableau R	Excel		
6	Spotfire	SAS			
7	Azure Data Analytics platforms (HDInsight, APS and PDW, etc)	Scripting language, e.g. Octave			
8	Amazon Data Analytics platform (Kinesis, EMR, etc)	Statistical tools and data mining techniques			
9	Other cloud based Data Analytics platforms (HortonWorks, Vertica LexisNexis HPCC System, etc)	Other Statistical computing and languages (WEKA, KNIME, IBM SPSS, etc)			

Suggested e-CF extensions for DS

A. PLAN and Design

- A.10* Organisational workflow/processes model definition/formalisation
- A.11* Data models and data structures

B. BUILD: Develop and Deploy/Implement

- B.7* Apply data analytics methods (to organizational processes/data)
- B.8* Data analytics application development
- B.9* Data management applications and tools
- B.10* Data Science infrastructure deployment

C. RUN: Operate

- C.5* User/Usage data/statistics analysis
- C.6* Service delivery/quality data monitoring

D. ENABLE: Use/Utilise

- D10. Information and Knowledge Management (powered by DS)
- D.13* Data presentation/visualisation, actionable data extraction
- D.14* Support business processes/roles with data and insight (support to D.5, D.6, D.7, D.12)
- D.15* Data management/preservation/curation with data and insight

E. MANAGE

- E.10* Support Management and Business Improvement with data and insight (support to E.5, E.6)
- E.11* Data analytics for (business) Risk Analysis/Management (support to E.3)
- E.12* ICT and Information security monitoring and analysis (support to E.8)

Need for separate Data Science Competence Framework definition?

- There is no direct mapping of required/identified DS competences and skills to e-CF areas (i.e. organizational workflow stages)
 - Data Scientist is involved into all stages/areas
 - In most cases Data Scientist competences are connected to Data Lifecycle and not organizational workflow
- Data Scientist is a cross-intra-organizational role
 - Interact with different roles
 - Deliver information to top management
- Initially assistive but may play key (leading) role in data driven organizational processes and services
 - Potentially may have best organizational insight
 - Provide a basis for a future CEO mindset
- e-CF3.0 extensions with specific Data Science competences as a first step

Data Scientist and Subject Domain Specialist

Subject domain components

- Model (and data types)
- Methods
- Processes
- Domain specific data and presentation/visualization methods (?)
- Organisational roles and relations

Data Scientist is an assistant to Subject Domain Specialists

- Translate subject domain Model, Methods, Processes into abstract data driven form
- Implement computational models in software, build required infrastructure and tools
- Do (computational) analytic work and present it in a form understandable to subject domain
- Discover new relations originated from data analysis and advice subject domain specialist
- Interact and cooperate with different organizational roles to obtain data and deliver results and/or actionable data

Data Science and Subject Domains

Possible Data Scientist profiles/roles (as extension to CWA16458 (2012) or ESCO)

- Data Analytics
 - Data Mining
 - Machine Learning
- Data Management
 - Digital Librarian, Data Archivist, Data Curator
- Data Science Engineering
 - Data Analytics applications development
 - Scientific programmer
 - Data Science/Big Data Infrastructure engineer/developer/operator
- Data Science Researcher
 - Data Science creative
 - Data Science consultant/Analyst
- Business Analyst
- Data Scientist in subject/research domain
- Research e-Infrastructure brings its own specifics to required competences and skills definition

Mapping Data Scientist Competences to e-CF3.0

- Use e-CF to identify
 - ICT/CS background competences/skills/knowledge
 - Required basic education and training
- Use Data Science CF-DS to define additional training/re-skilling
 - From general ICT/(Librarian) to Data Scientist
 - Specialised Data Science courses
 - From Data Scientist practitioner to certified Data Scientist
 - General IT and CS courses

EXAMPLE: e-CF Dimensions for RI Technical (based on RDA IG-ETRD work)

- Dimension 1: 5 e-Competence areas, derived from the ICT processes present in RI development, management and operation:
 - A. PLAN and DESIGN
 - B. **DEVELOP and DEPLOY/IMPLEMENT** (BUILD)
 - C. **OPERATE** (RUN)
 - D. **USE**: UTILISE (ENABLE)
 - E. MANAGE
- Dimension 2: A set of reference competences for each area; currently identified 35 competences that are mapped from the general eCFv3.0.
- Dimension 3: Proficiency levels of each e-Competence, currently using e-CF approach that provides European reference level specifications on e-Competence levels e-1 to e-5, which are related to the EQF levels 3 to 8.
 - Increasing number of practicing data scientists have master degree and higher
- Dimension 4: Samples of knowledge and skills related to e-Competences in dimension 2. They will be provided to add value and context and are not intended to be exhaustive.
 - Knowledge identification is important to build Body of Knowledge

EXAMPLE: How to use e-CF for New Profile of RI **Technical**

A. PLAN and DESIGN

A.2. Service Level Management

A.3. Product / Service Planning

A.5. Application Design

A.4. Architecture Design

Additional

A.6. Sustainable Development

A.7. Innovating and Technology Trend Monitoring A.8. Business/Research Plan Development and Grant application

A.1. RI and Research Strategy Alignment

B. BUILD: DEVELOP and DEPLOY/IMPLEMENT

B.1. Application Development (Regs Engineering,

Function Specs, API, HCI)

B.2. Component Integration

B.3. Testing (RI services and Sci Apps)

B.4. Solution/Apps Deployment

Additional

B.5. Documentation Production

B.6. Systems Engineering (DevOps)

C. OPERATE (RUN)

C.1. User Support

C.2. Service Delivery

C.3. Problem Management

Additional

C.4. Change Support (Upgrade/Migration)

D. USE: UTILISE (ENABLE)

D.1. Scientific Applications Integration (on running RI)

D.5. Data collection and preservation

D.4. New requirements and change Identification

D.6. Education and Training Provision

Additional

D.2. Information Security Strategy Development

D.3. RI/ICT Quality Strategy Development

D.7. Purchasing/Procurement

D.8. Contract Management

D.9. Personnel Development

D.10. Dissemination and outreach

E. MANAGE

E.1. Overall RI management (by systems and components)

E.5. Information/Data Security Management

Additional

E.6. Data Management (including planning and lifecycle management, curation)

E.4. RI Security and Risk/Dependability Management

E.2. Project and Portfolio Management

E.3. ICT Quality Management and Compliance

E.7. RI/IS Governance

- Define a taxonomy and classification for DS competences and skills as a basis for more formal CF-DS definition
 - Closer look at skills, tools and platforms
- Create a Questionnaire and run Survey using CF-DS vocabulary

 - Plan a number of key interviews, primarily experts and top executives at universities and companies
- Proceed with suggested e-CF3.0 extensions and participate in the next e-CF meetings (April and June 2016)
 - Provide feedback and contribution to ESCO
 - Talk to national e-CF bodies or adopters if available
- Suggest ACM2012 Classification extensions and contact ACM people
- Provide input to DS-BoK definition following from CF-DS
 - Link/Map to taxonomy of academic and educational and training courses
- Create open community forum to collect contribution
 - CF-DS document is on public comments available from EDISON website http://www.edison-project.eu/data-science-competence-framework-cf-ds
 - Start related Social Network groups to promote already obtained results and obtain feedback and community contribution

Survey link https://www.surveymonkey.com/r/EDISON_project_-Defining_Data_science_profession

EDISON project: Definin Data Analytics skills and c * 19. What are the competence Not re Use appropriate statistics to provide	competencie	es for data so	sience profess		CS:	
* 19. What are the competence * Not re	·				CS:	
Not n	es and skills a	a data scientis	t should have o	on data analyti	CS:	
Use appropriate				H	Highly	
	the	tualand fac oretical the	know prehensive, field tual and unde eoretical of the	dvanced knowledge of a Cod, critical awarerstanding in eories and be	iterface th etween ac	wledge at ne most dvanced er of a field
insight on data)	0	0	0	0	0
Use appropriate techniques for analysing data (AVB Testing, Association rule Learning, Crowdsourcing, Data fusion and integration, Data Mining, Ensemble learning, Machine learning)	0	0	0	0	0	0
Use Predictive analytics to analyse big data and discover new relation)	0	0	0	0	0
Research and analyse complex data sets, combine different sources of data to improve analysis	0	0	0	0	0	0
Develop specialised analytics to enable agile decision making	0	0	0	0	0	0

pro	profession							
coi	competencies for data science profession							
ı sci	a scientist should have on data management and curation:							
d II e	Comprehensive, factual and theoretical knowledge	Advanced knowledge of a field, critical understanding of theories and principles	Highly specialized knowledge, Critical awareness, interface between different fields	Knowledge at the most advanced frontier of a field				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				
	0	0	0	0				
on d	lata managem	ent and curatio	n:					