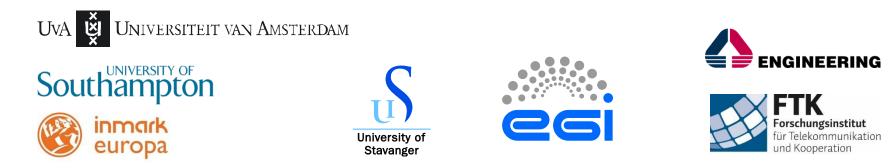


EDISON Data Science Framework (EDSF) as a foundation for the Data Science profession definition and sustainable skills development

EDISON – Education for Data Intensive Science to Open New science frontiers

Grant 675419 (INFRASUPP-4-2015: CSA)


Yuri Demchenko, EDISON Project University of Amsterdam

Workshop "Wissenschaft im Digitalen Wandel"

6 June 2017, Mannheim, Germany

- Background
 - Recent EU Initiatives, European Digital Single Market (DSM) and demand for data enabled skills
- EDISON Data Science Framework (EDSF)
 - From Data Science Competences and Skills to Body of Knowledge and Model Curriculum
 - Data Science Profession Profiles family and organisational skills management
- Use of EDSF for Data Science curricula design
 - Research Data Management
 - Professional issues in Data Science
- Activities and initiatives worldwide to establish Data (Science) professions family
 - BHEF, DARE/APEC, IEEE/ACM
- Summary and discussion

EDISON Data Science Framework (EDSF)

Visionaries and Drivers: Seminal works, High level reports, Activities

DITED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

The Fourth Paradigm: Data-Intensive Scientific Discovery.

By Jim Gray, Microsoft, 2009. Edited by Tony Hey, Kristin Tolle, et al. http://research.microsoft.com/en-us/collaboration/fourthparadigm/

Riding the wave: How Europe can gain from the rising tide of scientific data.

Final report of the High Level Expert Group on Scientific Data, October 2010. http://cordis.europa.eu/fp7/ict/einfrastructure/docs/hlg-sdi-report.pdf

Research Data Sharing without barriers

https://www.rd-alliance.org/

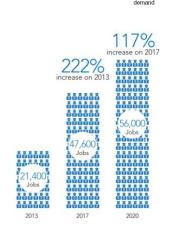
HLEG report on European **Open Science Cloud**

(October 2016)

The Data Harvest: How sharing research data can yield knowledge, jobs and growth. An RDA Europe Report. December 2014 https://rd-alliance.org/dataharvest-report-sharing-dataknowledge-jobs-and-growth.html

Emergence of Cognitive Technologies (IBM Watson and others)

Digitalising European Industry: Reaping the full benefits of a **Digital Single Market**. COM(2016) 180 final, Brussels, 19.4.2016


- The need for new multidisciplinary and digital skills in particular Data Scientist
 - Expected rapidly growing demand will lead to more than 800 000 unfilled vacancies by 2020
- **European Cloud Initiative** Building a competitive data and knowledge economy in Europe, COM(2016) 178 final, Brussels, 19.4.2016
- European Open Science Cloud (EOSC) and European digital research and data infrastructure
 - To offer 1.7 million European researchers and 70 million professionals in science and technology open and seamless services for *storage, management, analysis and re-use* of research data
- Address growing demand and shortage of data-related skills

A New Skills Agenda for Europe, COM(2016) 381 final Brussels, 10.6.2016

- Addresses the need for digital and complementary skills, ensure young talents flow into data driven research and industry
- Launch Digital Skills and Jobs Coalition (1st December 2016, Brussels) to develop comprehensive national digital skills strategies by mid-2017

Demand for Data Science and data related professions

- McKinsey Global Institute on Big Data Jobs (2011)
 http://www.mckinsey.com/mgi/publications/big_data/index.asp
 - Estimated gap of 140,000 190,000 data analytics skills by 2018
- UK Big Data skills report 2014
 - 6400 UK organisations with 100+ staff will have implemented Big Data Analytics by 2020
 - Increase of Big Data jobs from 21,400 (2013) to 56,000 (2017)
- IDC Report on European Data Market (2015)
 - Number of data workers 6.1 mln (2014) increase 5.7% from 2013
 - Average number of data workers per company 9.5 increase 4.4%
 - Gap between demand and supply 509,000 (2014) or 7.5%
- HLEG report on European Open Science Cloud (October 2016) identified need for data experts and data stewards
 - Recommendation: Allocate 5% grant funding for Data management and preservation
 - Estimation: More than 80,000 data stewards (1 per every 20 scientists)
 - Core Data Experts (as defined) need to be trained and their career perspective improved

2018 supply

2008

employment

Graduates

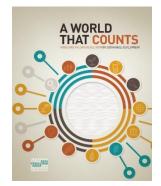
with deep analytica 140-190

50–60% ga relative to

2018 suppl

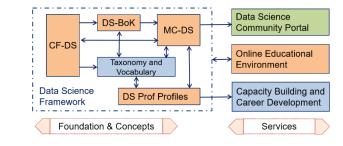
Industry report on Data Science Analytics and Data enabled skills demand

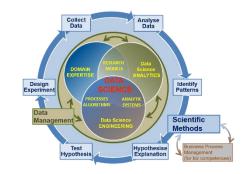
- IDC Report on European Data Market (2015)
 - Number of data workers 6.1 mln (2014) increase 5.7% from 2013
 - Average number of data workers per company 9.5 increase 4.4%
 - Gap between demand and supply 509,000 (2014) or 7.5%
- PwC and BHEF report "Investing in America's data science and analytics talent: The case for action" (April 2017)
 - <u>http://www.bhef.com/publications/investing-americas-data-science-and-analytics-talent</u>
- Burning Glass Technology, IBM, and BHEF report "The Quant Crunch: How the demand for Data Science Skills is disrupting the job Market" (April 2017)
 - <u>http://www.bhef.com/publications/quant-crunch-how-demand-data-science-skills-disrupting-job-market</u>
 - https://public.dhe.ibm.com/common/ssi/ecm/im/en/iml14576usen/IML14576USEN.PDF

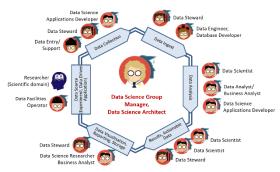

OECD

- Demand for new type of *"dynamic self-re-skilling workforce"*
- Continuous learning and professional development to become a shared responsibility of workers and organisations

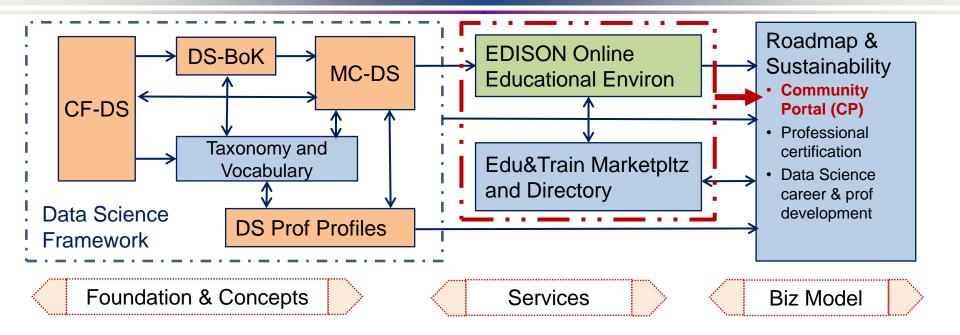
[ref] SKILLS FOR A DIGITAL WORLD, OECD, 25-May-2016 http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/IIS(2015)10 /FINAL&docLanguage=En


UN


- Data Revolution Report "A WORLD THAT COUNTS" Presented to Secretary-General (2014) <u>http://www.undatarevolution.org/report/</u>
- Data Literacy is defined as key for digital revolution
- Data literacy = critically analyse data collected and data visualised



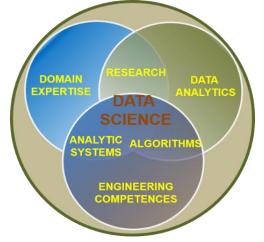
EDISON
building the data
science professionEDISON Services for Data Science and Skills
Management and Tailored Education


- EDISON Data Science Framework (EDSF)
 - Compliant with EU standards on competences and professional occupations e-CFv3.0, ESCO
 - Customisable courses design for targeted education and training
- Skills development and career management for Core
 Data Experts and related data handling professions
- Capacity building and Data Science team design
- Academic programmes and professional training courses (self) assessment and design
- EU network of Champion universities pioneering Data Science academic programmes
- Engagement in relevant RDA activities and groups
- Cooperation with International professional organisations IEEE, ACM, BHEF, APEC (AP Economic Cooperation)

EDISON Data Science Framework (EDSF)

EDISON Framework components

- CF-DS Data Science Competence Framework
- DS-BoK Data Science Body of Knowledge
- MC-DS Data Science Model Curriculum
- DSP Data Science Professional profiles
- Data Science Taxonomies and Scientific Disciplines Classification
- EOEE EDISON Online Education Environment


Methodology

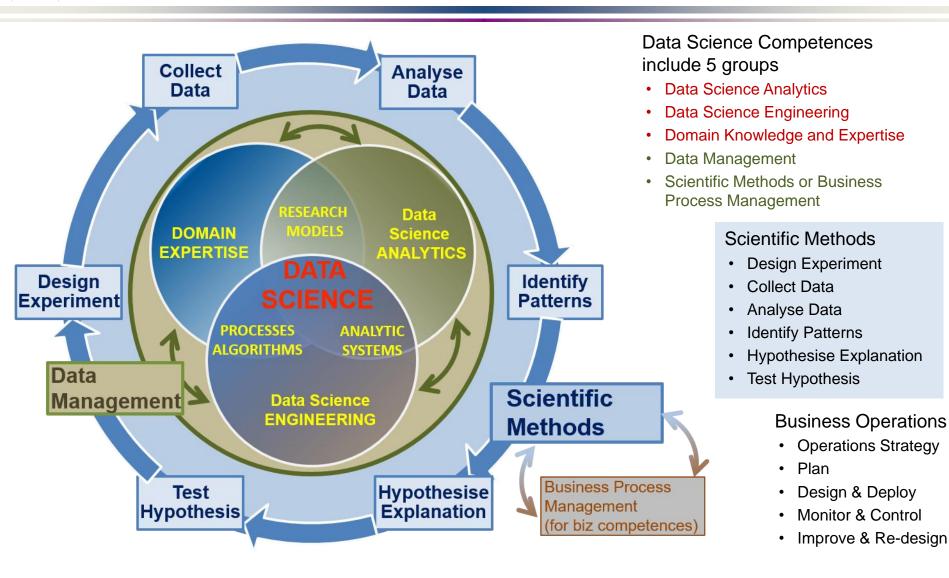
- ESDF development based on job market study, existing practices in academic, research and industry.
- Review and feedback from the ELG, expert community, domain experts.
- Input from the champion universities and community of practice.

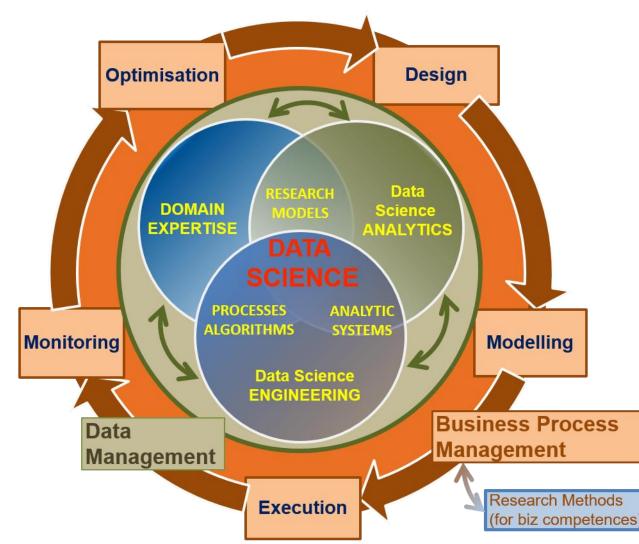
Data Scientist definition

Based on the definitions by NIST Big Data WG (NIST SP1500 - 2015)

- A Data Scientist is a practitioner who has sufficient knowledge in the overlapping regimes of expertise in business needs, domain knowledge, analytical skills, and programming and systems engineering expertise to manage the end-to-end scientific method process through each stage in the big data lifecycle
 - Till the delivery of an expected scientific and business value to science or industry

[ref] Legacy: NIST BDWG definition of Data Science


- Other definitions to admit such features as
 - Ability to solve variety of business problems
 - Optimize performance and suggest new services for the organisation
 - Develop a special mindset and be statistically minded, understand raw data and "appreciate data as a first class product"
- **Data science** is the empirical synthesis of actionable knowledge and technologies required to handle data from raw data through the complete data lifecycle process.
- **Big Data** is the technology to build system and infrastructures to process large volume of structurally complex data in a time effective way


Identified Data Science Competence Groups

- Core Data Science competences/skills groups
 - Data Science Analytics (including Statistical Analysis, Machine Learning, Business Analytics)
 - Data Science Engineering (including Software and Applications Engineering, Data Warehousing, Big Data Infrastructure and Tools)
 - **Domain Knowledge and Expertise** (Subject/Scientific domain related)
- EDISON identified 5 core competence groups demanded by organisations
 - Data Management, Curation, Preservation
 - Scientific or Research Methods and/vs Business Processes/Operations
- Other skills commonly recognized aka "soft skills" or "21st Century Skills"
 - Inter-personal skills and team work, cooperativeness
- Important aspect of integrating Data Scientist (team) into organisation structure
 - General Data Science (and Data) **literacy** for all involved roles and management
 - Role of Data Scientist: Provide a kind of literacy advice and guidance to organisation

Data Science Competence Groups - Research

Data Science Competences Groups – Business

Data Science Competences include 5 groups

- Data Science Analytics
- Data Science Engineering
- Domain Knowledge and Expertise
- Data Management
- Scientific Methods or Business
 Process Management

Scientific Methods

- Design Experiment
- Collect Data
- Analyse Data
- Identify Patterns
- Hypothesise Explanation
- Test Hypothesis

Business Process Operations/Stages

- Design
- Model/Plan
- Deploy & Execute
- Monitor & Control
- Optimise & Re-design

Identified Data Science Competence Groups

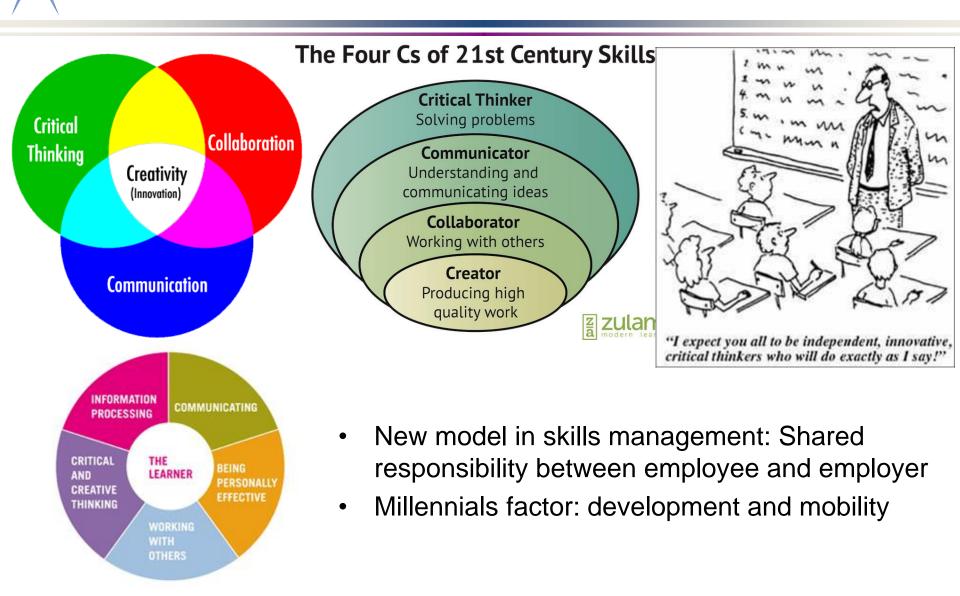
	Data Science Analytics (DSDA)	Data Management (DSDM)	Data Science Engineering (DSENG)	Research/Scientific Methods (DSRM)	Data Science Domain Knowledge, e.g. Business Processes (DSDK/DSBPM)								
0	Use appropriate statistical techniques and predictive analytics on available data to deliver insights and discover new relations	Develop and implement data management strategy for data collection, storage, preservation, and availability for further processing.	Use engineering principles to research, design, develop and implement new instruments and applications for data collection, analysis and management	Create new understandings and capabilities by using the scientific method (hypothesis, test/artefact, evaluation) or similar engineering methods to discover new approaches to create new knowledge and achieve research or organisational goals	Use domain knowledge (scientific or business) to develop relevant data analytics applications, and adopt general Data Science methods to domain specific data types and presentations, data and process models, organisational roles and relations								
1	DSDA01 Use predictive analytics to analyse big data and discover new relations	DSDM01 Develop and implement data strategy, in particular, Data Management Plan (DMP)	DSENG01 Use engineering principles to design, prototype data analytics applications, or develop instruments, systems	DSRM01 Create new understandings and capabilities by using scientific/ research methods or similar domain related development methods	DSBPM01 Understand business and provide insight, translate unstructured business problems into an abstract mathematical framework								
2	DSDA02 Use statistical techniq to deliver insights	DSDM02 Develop data models including metadata	DSENG02 Develop and apply computational solutions	DSRM02 Direct systematic study toward a fuller knowledge or understanding of the observable facts	DSBPM02 Participate strategically and tactically in financial decisions								
3	DSDA03 Develop specialized	DSDM03 Collect integrate data	DSENG03 Develops specialized tools	DSRM03 Undertakes creative work	DSBPM03 Provides support services to other								
4	DSDA04 Analyze complex data	DSDM04 Maintain repository	DSENG04 Design, build, operate	DSRM04 Translate strategies into actions	DSBPM04 Analyse data for marketing								
5	DSDA05 Use different analytics	DSDM05 Visualise cmplx data	DSENG05 Secure and reliable data	DSRM05 Contribute to organizational goals	DSBPM05 Analyse optimise customer relatio								
Ν	Aannheim, 6 June 2017		EDISON Data Science Fr	14									

Identified Data Science Skills/Experience Groups

Group 1: Skills/experience related to competences

- Data Analytics and Machine Learning
- Data Management/Curation (including both general data management and scientific data management)
- Data Science Engineering (hardware and software) skills
- Scientific/Research Methods or Business Process Management
- Application/subject domain related (research or business)
- Mathematics and Statistics
- Group 2: Big Data (Data Science) tools and platforms
 - Big Data Analytics platforms
 - Mathematics & Statistics applications & tools
 - Databases (SQL and NoSQL)
 - Data Management and Curation platform
 - Data and applications visualisation
 - Cloud based platforms and tools
- Group 3: Programming and programming languages and IDE
 - General and specialized development platforms for data analysis and statistics

Group 4: Soft skills or 21st Century Skills


– Personal, inter-personal communication, team work, professional network

21st Century Skills (DARE & BHEF & EDISON)

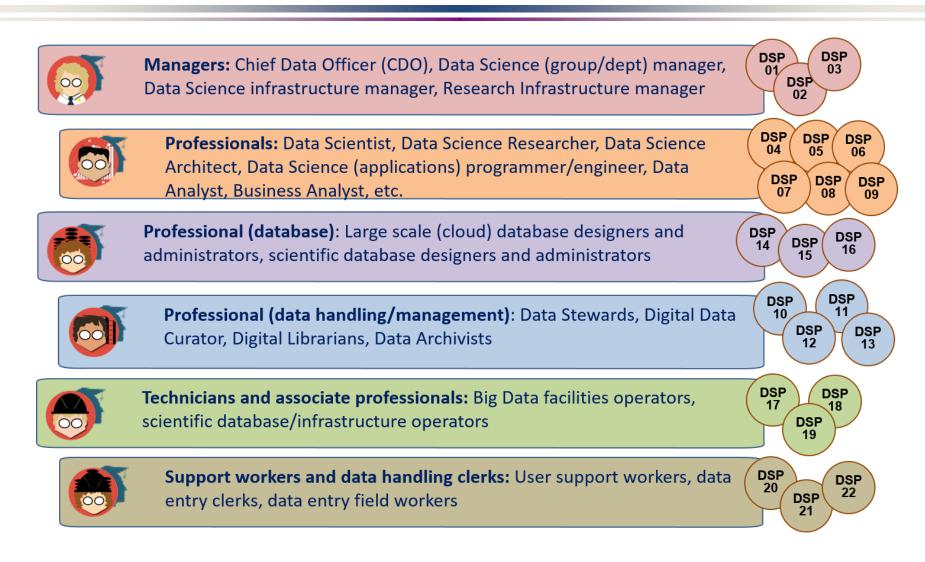
- 1. **Critical Thinking:** Demonstrating the ability to apply critical thinking skills to solve problems and make effective decisions
- 2. Communication: Understanding and communicating ideas
- 3. Collaboration: Working with other, appreciation of multicultural difference
- 4. Creativity and Attitude: Deliver high quality work and focus on final result, initiative, intellectual risk
- 5. Planning & Organizing: Planning and prioritizing work to manage time effectively and accomplish assigned tasks
- 6. Business Fundamentals: Having fundamental knowledge of the organization and the industry
- 7. Customer Focus: Actively look for ways to identify market demands and meet customer or client needs
- 8. Working with Tools & Technology: Selecting, using, and maintaining tools and technology to facilitate work activity
- **9. Dynamic (self-) re-skilling:** Continuously monitor individual knowledge and skills as shared responsibility between employer and employee, ability to adopt to changes
- 10. Professional networking: Involvement and contribution to professional network activities
- **11. Ethics:** Adhere to high ethical and professional norms, responsible use of power data driven technologies, avoid and disregard un-ethical use of technologies and biased data collection and presentation

21st Century Skills - Different views of the same



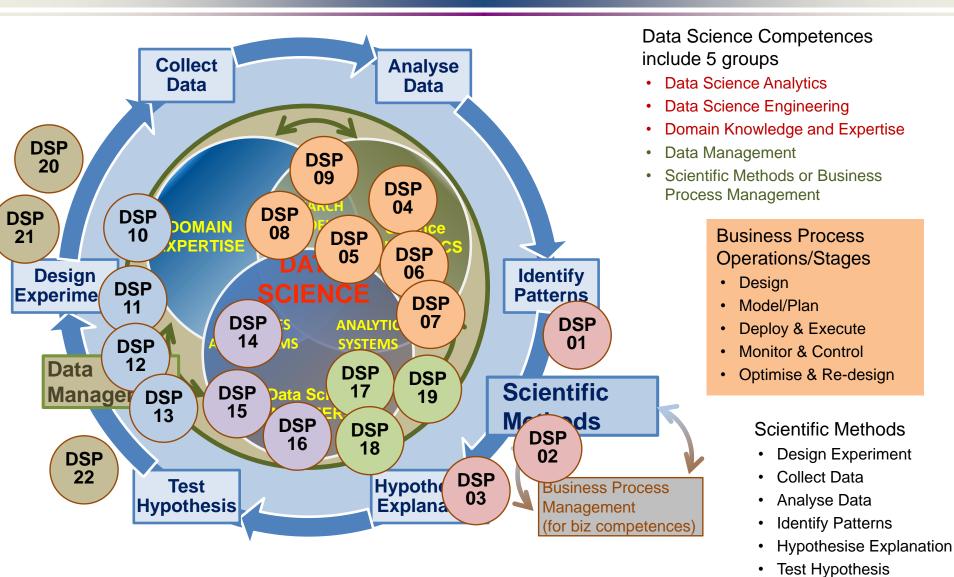
×

Practical Application of the CF-DS


- Basis for the definition of the Data Science Body of Knowledge (DS-BoK) and Data Science Model Curriculum (MC-DS)
 - CF-DS => Learning Outcomes (MC-DS) => Knowledge Areas (DS-BoK)
 - CF-DS => Data Science taxonomy of scientific subjects and vocabulary
- Data Science professional profiles definition
 - Extend existing EU standards and occupations taxonomies: e-CFv3.0, ESCO, others
- Professional competence benchmarking
 - For customizable training and career development
 - Including CV or organisational profiles matching
- Professional certification
 - In combination with DS-BoK professional competences benchmarking
- Vacancy construction tool for job advertisement (for HR)
 - Using controlled vocabulary and Data Science Taxonomy

DSP Profiles mapping to ESCO Taxonomy High Level Groups

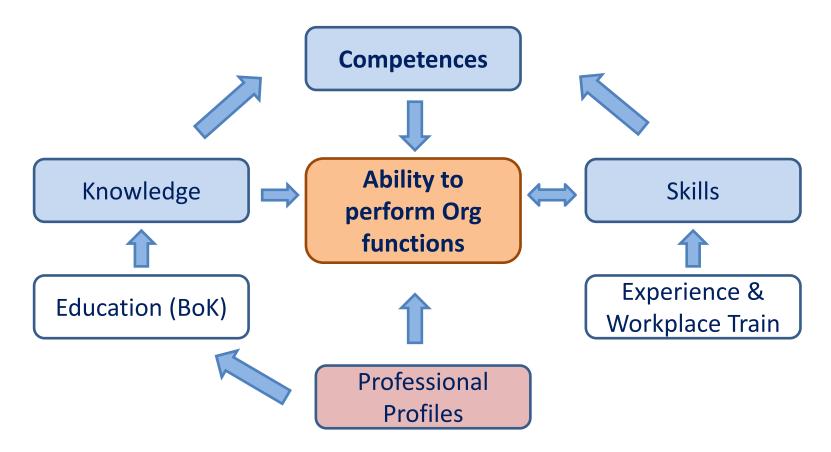
DSP Profiles mapping to corresponding CF-DS Competence Groups
 – Relevance level from 5 – maximum to 1 – minimum


Data Science Professions Family

Icons used: Credit to [ref] https://www.datacamp.com/community/tutorials/data-science-industry-infographic

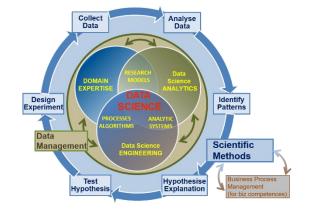
EDISON Data Science Framework (EDSF)

Mapping DS Profiles to Competence Map



Education and Training

- Foundation and methodological base
 - Data Science Body of Knowledge (DS-BoK)
 - Taxonomy and classification of Data Science related scientific subjects
 - Data Science Model Curriculum (MC-DS)
 - Set Learning Units mapped to CF-DS Learning and DS-BoK Knowledge Areas/Units
 - Instructional methodologies and teaching models
- Platforms and environment
 - Virtual labs, datasets, developments platforms
 - Online education environment and courses management
- Services
 - Individual benchmarking and profiling tools (competence assessment)
 - Knowledge evaluation tools
 - Certifications and training for self-made Data Scientists practitioners
 - Education and training marketplace: Courses catalog and repository


• **Competence** is a demonstrated ability to apply knowledge, skills and attitudes for achieving observable results

Data Science Body of Knowledge (DS-BoK)

DS-BoK Knowledge Area Groups (KAG)

- KAG1-DSA: Data Analytics group including Machine Learning, statistical methods, and Business Analytics
- KAG2-DSE: Data Science Engineering group including Software and infrastructure engineering

- KAG3-DSDM: Data Management group including data curation, preservation and data infrastructure
- KAG4-DSRM: Scientific/Research Methods group
- KAG5-DSBP: Business process management group
- Data Science domain knowledge to be defined by related expert groups

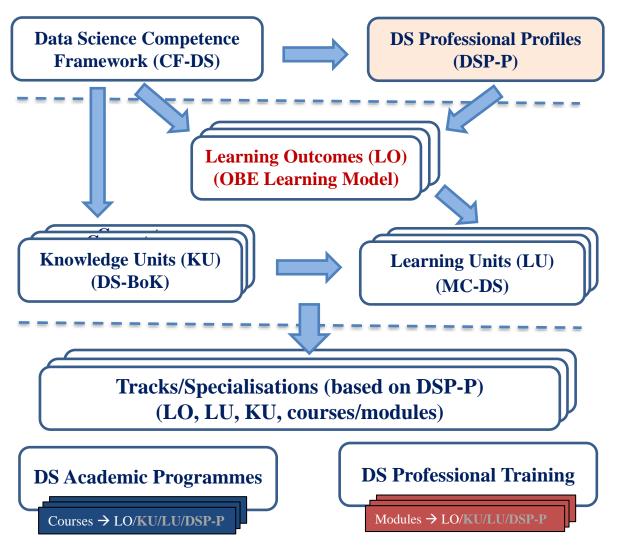
Data Science Model Curriculum (MC-DS)

Data Science Model Curriculum includes

- Learning Outcomes (LO) definition based on CF-DS
 - LOs are defined for CF-DS competence groups and for all enumerated competences
- LOs mapping to Learning Units (LU)
 - LUs are based on CCS(2012) and universities best practices
 - Data Science university programmes and courses inventory (interactive) <u>http://edison-project.eu/university-programs-list</u>
- LU/course relevance: Mandatory Tier 1, Tier 2, Elective, Prerequisite
- Learning methods and learning models (in progress)

Example DS-BoK Knowledge Areas definition and mapping to existing BoKs and CCS (2012)

1														
	Knowledge Area Groups (KAG)	Knowledge (KA)	Areas	Suggestee	d Knov	wledge Units (I	ки)	Mapping to CCS Science extension	•	ng suggested Data ing BoKs				
	KAG1 DSDA: Data Analytic group	Theory of computation	Design and Analysis of Algorith Machine Learning Theory			าms	CCS2012: Theor Desigr	and analysis o						
	(including Machine Learning,	Knowledge Area Groups (KAG)	Kno (KA)	-	ledge Areas Suggest		nowledge	e Units (KU)		CCS2012 (including suggested Data ensions) and existing BoKs				
	statistical methods)	KAG2-DSENG Data Science Engineering	orga	nputer systems anisation for Data		Parallel and Architecture				mputer systems organization chitectures Parallel architectures				
		group including Software an		ea Groups AG)		Knowledge Areas (KA)		ted Knowledge U	\mathcal{I}	Mapping to CCS2012 (including suggested Data Science extensions) and existing BoKs				
		infrastructu engineering				Vlanagement nterprise nfrastructure	Data management, including Reference and Master Data Data Warehousing and Business			DM-BoK selected KAs (1) Data Governance, (2) Data Architecture,				
							Intelligence Data storage and operations			(3) Data Modelling and Design,(4) Data Storage and Operations,(5) Data Security,				
							Data ar	chives/storage co		(6) Data Integration and Interoperability,(7) Documents and Content,(8) Reference and Master Data,				
I							Metadata, linked data, provenance			(9) Data Warehousing and Business Intelligence, (10) Metadata, and				
							Data infrastructure, data regis and data factories		registries	(11) Data Quality.				
•	Mappir	ng sugges	sted to	o CCS	201	2	Data se	ecurity and protec	tion					
	and ex	isting Boł	۲s					overnance, data q tion and Interope						

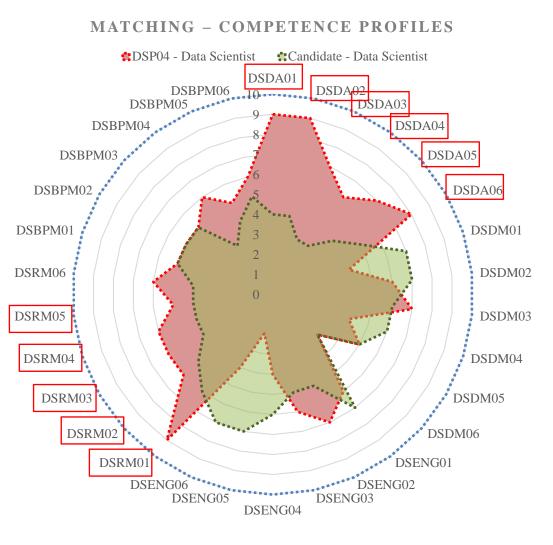

Example MC-DS Mapping Learning Units to DS-BoK and CCS (2012)

			KAG/	Learnin	ng Unit	t (cour	(course name) ²		Type/relevance ³ Map to I						DS-BoK, CCS2012 and known BoKs				
			LU# *)					Tier Tier 1 2		Electiv		re equisite		CCS2012 based academic subjects DS-BoK and other BoK					
		Software requi design			irements and					Exten			Extens	ions are suggested from SWEBOK SV			SWEBOK selected KAS Software requirements		
KAG	G/ L						/releva	ance ³			Map t	o DS-E	ЗоК, СС	 S2012 and	d known BoKs				ו ruction
LU# *)	#								e Pre requisite		CCS2012 based academic subje				DS-BoK and other BoKs			g enance	
		nformation Mathematic										Ma	athema	tical analy	vsis				configuration
	E	xtensibility			new														engineering
	A	Artificial Int			>										No specific BoK are d	No specific BoK are defined eering model			
		Natural Lang		ocessing KAG/		Learning Unit (course name)				Artificial intelligence Type/relevance ³ Map to DS-BoK, CCS2012 and known BoKs									
		Knowledge Reasoning	mining and knc pvery Data							Tie			ctive	Pre requisite	CCS2012 based acad				and other BoKs
)ata mining liscovery				Data type registries, PID,					2			requirte	Extended with the g	the general Data Management		General Data Management KA'	
	Т	ext analysi	s, Data n		metadata Research data infrastructur				re.		-				Knowledge Areas ar	nd related academic subjects.		Data Lifecycle Management Data archives/storage complian	
	Text analytics includ linguistic, and struct techniques to analys and unstructured da Machine Learning th algorithms				Open Science, Open Data, Access, ORCID												New record data Acce Data		fication KAs to support RDA mmendations and commur management models (Ope
				Extensibility point for add courses					ng nev	v									Access, Open Data, etc) Data type registries, PIDs Data infrastructure and Data Fa
	C	Classificatio	n metho															TBD – To	o follow RDA and ERA nity developments
			Research methodology, re cycle				search						Extended with the general Scientific/ResearchSuggeMethods subjects and related academic subjects.related				ted KAs to develop DSRM competences:		
	Modelling and planning					-										(e.g. 4 st	n methodology, resear ep model Hypothesis n Methods – Artefact -		
					1. 19.										nesedicii methous - Artelact -				

Mapping suggested to ACM CCS2012, DS-BoK and other related BoKs

×

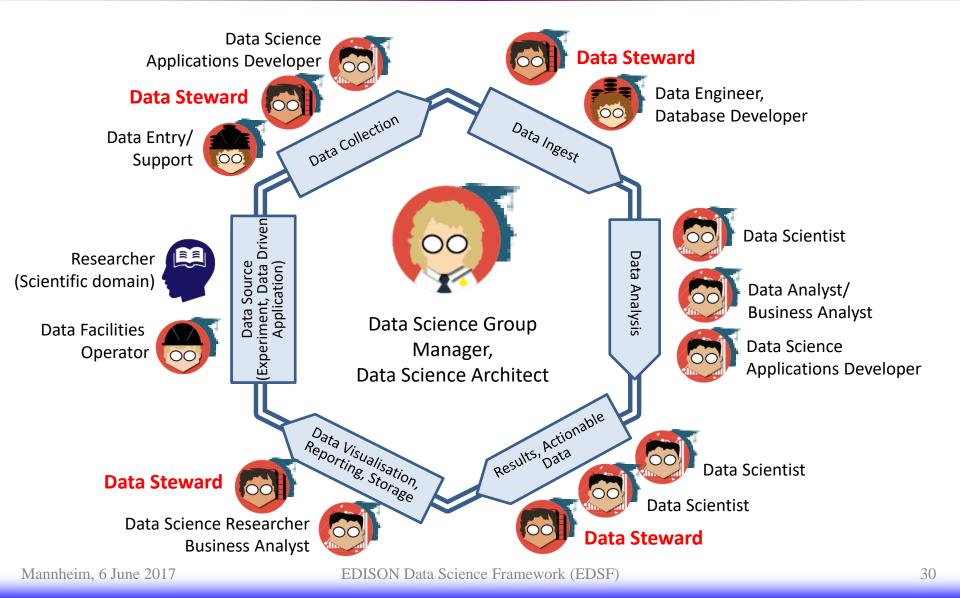
Outcome Based Educations and Training Model



From Competences and DSP Profiles to Learning Outcomes (LO) and to Knowledge Unites (KU) and Learning Units (LU)

 EDSF allow for customized educational courses and training modules design

Individual Competences Benchmarking



Individual Education/Training Path based on Competence benchmarking

- Red polygon indicates the chosen professional profile: Data Scientist (general)
- Green polygon indicates the candidate or practitioner competences/skills profile
- Insufficient competences (gaps) are highlighted in *red*
 - DSDA01 DSDA06 Data Science Analytics
 - DSRM01 DSRM05 Data Science Research Methods
- Can be use for team skills match marking and organisational skills management

[ref] For DSP Profiles definition and for enumerated competences refer to EDSF documents CF-DS and DSP Profiles.

Building a Data Science Team

Data Science or Data Management Group/Department: Organisational structure and staffing - EXAMPLE

Data Science or Data Management Group/Department

>> Reporting to CDO/CTO/CEO

services

Providing cross-organizational

- (Managing) Data Science Architect (1)
- Data Scientist (1), Data Analyst (1)
- Data Science Application programmer (2)
- Data Infrastructure/facilities administrator/operator: storage, cloud, computing (1)
- **Data stewards**, curators, archivists (3-5)

Estimated: Group of 10-12 data specialists for research institution of 200-300 research staff.

Growing role and demand for Data Stewards and data stewardship

Data Stewards – A rising new role in Data Science ecosystem

- Data Stewards as a key bridging role between Data Scientists as (hard)core data experts and scientific domain researchers
- Current definition of Data Steward (part of Data Science Professional profiles)
 - Data Steward is a data handling and management professional whose responsibilities include planning, implementing and managing (research) data input, storage, search, and presentation. Data Steward creates data model for domain specific data, support and advice domain scientists/ researchers during the whole research cycle and data management lifecycle.

- Data Management / Research Data Management
 Data Curation, Data Stewardship
- Professional issues in Data Science
 - Including Ethics and responsible use of Data Science

KAG3-DSDM: Data Management group: data curation, preservation and data infrastructure

DM-BoK version 2 "Guide for performing data management"

- 11 Knowledge Areas
 - (1) Data Governance
 - (2) Data Architecture
 - (3) Data Modelling and Design
 - (4) Data Storage and Operations
 - (5) Data Security
 - (6) Data Integration and Interoperability
 - (7) Documents and Content
 - (8) Reference and Master Data
 - (9) Data Warehousing and Business Intelligence
 - (10) Metadata
 - (11) Data Quality

Other Knowledge Areas motivated by RDA, European Open Data initiatives, European Open Data Cloud

(12) PID, metadata, data registries

- (13) Data Management Plan
- (14) Open Science, Open Data, Open Access, ORCID

(15) Responsible data use

Highlighted in red: Considered (Research) Data Management literacy (minimum required knowledge)

Research Data Management Model Curriculum – Part of the EDISON Data Literacy Training

A. Use cases for data management and stewardship

Preserving the Scientific Record

B. Data Management elements (organisational and individual)

- Goals and motivation for managing your data
- Data formats
- Creating documentation and metadata, metadata for discovery
- Using data portals and metadata registries
- Tracking Data Usage
- Handling sensitive data
- Backing up your data
- Data Management Plan (DMP) to be a part of hands on session

Collaboration with the Research Data Alliance (RDA) on developing model curriculum on Research Data Literacy:

- Modular, Customisable, Localised, Open Access
- Supported by the network of trainers via resource swap board

C. Responsible Data Use Section (Citation, Copyright, Data Restrictions)

D. Open Science and Open Data (Definition, Standards, Open Data use and reuse, open government data)

- Research data and open access
- Repository and self- archiving services
- ORCID identifier for data
- Stakeholders and roles: engineer, librarian, researcher
- Open Data services: ORCID.org, Altmetric Doughnut, Zenodo

E. Hands on:

- a) Data Management Plan design
- b) Metadata and tools
- c) Selection of licenses for open data and contents (e.g. Creative Common and Open Database)

Professional Issues in Data Science

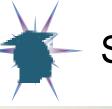
- Data Science subjects/disciplines/components technologies
- Research Data Management and RDM Plan
 - Including data format, metadata
- Open Data and Open Science
- Data related skills and career management
 - Including Data Science certification
- Responsible Data Science and professional ethics
- 21st Century Skills
- Data protection, data privacy, data security

EDSF Recognition, Endorsement and Implementation

- **DARE (Data Analytics Rising Employment)** project by APEC (Asia Pacific Economic Cooperation)
 - DARE project Advisory Council meeting 4-5 May 2017, Singapore
- PcW and BHEF Report "Investing in America's data science and analytics talent" April 2017
 - Quotes EDSF and Amsterdam School of Data Science
- Dutch Ministry of Education recommended EDSF as a basis for university curricula on Data Science
 - Workshop "Be Prepared for Big Data in the Cloud: Dutch Initiatives for personalized medicine and health research & toward a national action programme for data science training", Amsterdam 28 June 2016
- European Champion Universities network
 - 1st Conference (13-14 July, UK), 2nd Conference (14-15 March, Madrid, Spain)
 - 3rd Conference 19-20 June 2017, Warsaw

Further developments and Next steps (1)

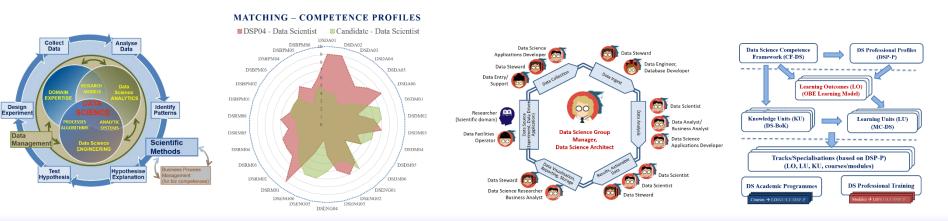
- Next EDSF release 2 (planned for June 2017) will link competences to skills and knowledge
- Final EDSF project deliverables (due August 2017) will include:
 - Data Science Education Sustainability Roadmap
 - Will involve wide consultation with experts community and also with EU policy makers
 - Will be reviewed by the EDISON Liaisons Groups (ELG)
 - Certification Framework for at least two levels of Data Science competences proficiency
 - Consultation with few certification providers is in the progress
- Toward EDSF and Data Science profession standardisation
 - ESCO (European Skills, Competences and Occupations) taxonomy extending with the Data Science related occupations, competences and skills
 - CEN TC428 (European std body) Extending current eCFv3.0 and ICT profiles towards e-CF4 with Data Science related competences
 - Work with the IEEE and ACM curriculum workshop to define Data Science Curriculum and extend current CCS2012 (Classification Computer Science 2012)
- Number of Case studies is planned in cooperation with active EU projects EDSA, EOSCpilot, BDVe, etc. (not limited to the project lifetime)


Further developments and Next steps (2)

- The EDISON project legacy will include (linked to the current project website and migrated to CP in the future)
 - EDSF EDISON Data Science Framework
 - Data Science Community Portal (CP) http://datasciencepro.eu/
 - EDISON project network including
 - EDISON Liaison Groups
 - Data Science Champions conference
 - Cooperative networks with European Research Infrastructures (e.g. HEP, Bioinformatics, Environment and Biodiversity, Maritime, etc),
 - International cooperative links BHEF, APEC, IEEE, ACM
- Applications and tools development
 - Prototypes will be produced in the timeline of the project but further development is a subject to additional funding
- Sustainability of the project legacy/products will be ensured by the project partners voluntarily for the period at least 3 years
 - EDSF will be maintained by UvA
 - CP by Engineering (Italy)

Further developments and Next steps (3)

- Further dissemination, engagement and outreach activity
 - Publishing final deliverables as BCP and books
 - Data Science Manifesto Primarily focused on professional and ethical issues in Data Science, new type of professional
 - Inter-universities initiative "Data Science for UN's Sustainable Development Goals" to focus in-curricula research (projects) on UN priority goals
- Wider engagement into EOSC activities related to RI Data related skills management and capacity building



Summary: Services and References

- EDISON Website http://edison-project.eu/
- EDISON Data Science Framework (EDSF)
 <u>http://edison-project.eu/edison/edison-data-science-framework-edsf</u>
- Directory of University programs <u>http://edison-project.eu/university-programs-list</u>
- Community Portal <u>http://datasciencepro.eu/</u>

- Survey Data Science Competences: Invitation to participate
 <u>https://www.surveymonkey.com/r/EDISON_project_-_Defining_Data_science_profession</u>
- Competences benchmarking and tailored training for practitioners
- Data Science Curriculum advice and design for universities
- Data Science team building and organizational roles profiling

Links to EDISON Resources

- EDISON project website <u>http://edison-project.eu/</u>
- EDISON Data Science Framework Release 1 (EDSF)
 <u>http://edison-project.eu/edison-data-science-framework-edsf</u>
 - Data Science Competence Framework <u>http://edison-project.eu/data-science-competence-framework-cf-ds</u>
 - Data Science Body of Knowledge
 <u>http://edison-project.eu/data-science-body-knowledge-ds-bok</u>
 - Data Science Model Curriculum
 <u>http://edison-project.eu/data-science-model-curriculum-mc-ds</u>
 - Data Science Professional Profiles
 <u>http://edison-project.eu/data-science-professional-profiles-definition-dsp</u>
- Survey Data Science Competences: Invitation to participate
 <u>https://www.surveymonkey.com/r/EDISON_project_-_Defining_Data_science_profession</u>

Other related links

- Amsterdam School of Data Science
 - <u>https://www.schoolofdatascience.amsterdam/</u>
 - <u>https://www.schoolofdatascience.amsterdam/education/</u>
- Research Data Alliance interest Group on Education and Training on Handling of Research Data (IG-ETHRD)
 - https://www.rd-alliance.org/groups/education-and-training-handling-research-data.html
- PwC and BHEF report "Investing in America's data science and analytics talent: The case for action" (April 2017)
 - <u>http://www.bhef.com/publications/investing-americas-data-science-and-analytics-talent</u>
- Burning Glass Technology, IBM, and BHEF report "The Quant Crunch: How the demand for Data Science Skills is disrupting the job Market" (April 2017)
 - <u>http://www.bhef.com/publications/quant-crunch-how-demand-data-science-skills-disrupting-job-market</u>
 - https://public.dhe.ibm.com/common/ssi/ecm/im/en/iml14576usen/IML14576USEN.PDF

European Open Science Cloud (EOSC)

HLEG report on European Open Science Cloud (October 2016) – Demand for Data Scientists/Stewards

Realising the European Open Science Cloud. First report and recommendations of the Commission High Level Expert Group on the European Open Science Cloud, October 2016 https://ec.europa.eu/research/openscience/pdf/realising_the_european_open_science_cloud_2 016.pdf

- Definition of the **Data Steward** as a distinctive role and profession
 - Core Data Experts need to be trained and their career perspective improved
- Estimation: More than 80,000 data stewards to serve 1.7 mln scientists in Europe (1 per every 20 scientists)
 - Based on 5% grant funding for Data management and preservation
- **Clash of cultures** between domain specialists and e-Infrastructure specialists (i.e. IT/Computer Science)

HLEG report on European Open Science Cloud (October 2016) – Demand for Core Data Expertise

Realising the European Open Science Cloud. First report and recommendations of the Commission High Level Expert Group on the European Open Science Cloud, October 2016

- Recommendation: Allocate 5% grant funding for Data management and preservation
- Estimation: More than 80,000 data stewards to serve 1.7 mln scientists in Europe (1 per every 20 scientists)
- Core data experts need to be trained and their career perspective improved

- Core Data Experts is a new class of colleagues with core scientific professional competencies and the communication skills to fill the gap between the two cultures.
 - Core data experts are neither computer savvy research scientists nor are they hardcore data or computer scientists or software engineers.
 - They should be technical data experts, though proficient enough in the content domain where they work routinely from the very beginning (experimental design, proposal writing) until the very end of the data discovery cycle
 - Converge two communities:
 - Scientists need to be educated to the point where they hire, support and respect Core Data Experts
 - Data Scientists (Core Data Experts) need to bring the value to scientific research and organisations
- Implementation of the EOSC needs to include instruments to help train, retain and recognise this expertise,
 - In order to support the 1.7 million scientists and over 70 million people working in innovation.

EOSC Report Recommendations – Implementation on training and skills

- I2.1: Set initial guiding principles to kick-start the initiative as quickly as possible. -> Bridge two cultures/communities
 - A first cohort of core data experts should be trained to translate the needs for data driven science into technical specifications to be discussed with hard-core data scientists and engineers.
 - This new class of core data experts will also help translate back to the hard- core scientists the technical opportunities and limitations

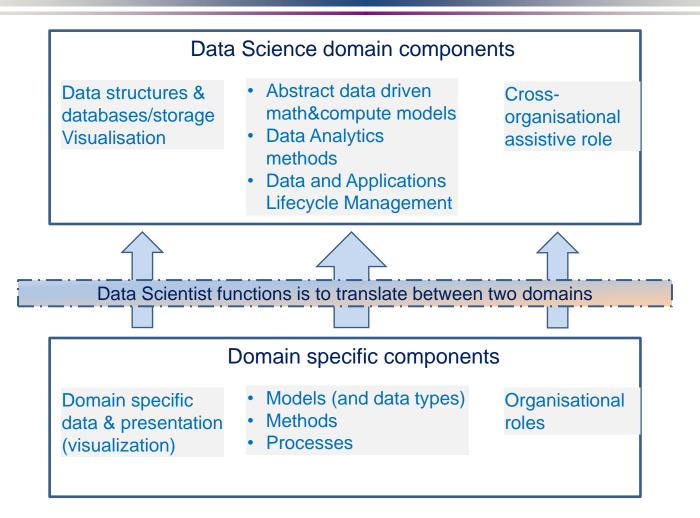
• 13: Fund a concerted effort to develop core data expertise in Europe.

- Substantial training initiative in Europe to locate, create, maintain and sustain the required core data expertise.
- By 2022, to train (hundreds of thousands of) certified core data experts with a demonstrable effect on ESFRI/e-INFRA activities and prospects for long-term sustainability of this critical human resource
 - Consolidate and further develop assisting material and tools for Data Management Plans and Data Stewardship plans (including long-term preservation in FAIR status)
- 17: Provide a clear operational timeline to deal with the early preparatory phase of the EOSC.
 - Define training needs for the necessary data expertise and draw models for the necessary training infrastructure

- Task is not for one community or one project
 - Need collaboration between different stakeholders and communities: academia, research, industry, public sector
- Task is not for science or RI only in isolation from industry and academia
- Needs strong conceptual approach

 Use science to solve the problems of science
- Standardisation is an important factor of sustainability and development

Data Scientist and Subject Domain Specialist


Subject domain components

- Model (and data types)
- Methods
- Processes
- Domain specific data and presentation/visualization methods
- Organisational roles and relations

Data Scientist is an assistant to Subject Domain Specialists

- Translate subject domain Model, Methods, Processes into abstract data driven form
- Implement computational models in software, build required infrastructure and tools
- Do (computational) analytic work and present it in a form understandable to subject domain
- Discover new relations originated from data analysis and advice subject domain specialist
- Present/visualise information in domain related actionable way
- Interact and cooperate with different organizational roles to obtain data and deliver results and/or actionable data

Data Science and Subject Domains

Data Scientist role is to maintain the Data Value Chain (domain specific):

Data Integration => Organisation/Process/Business Optimisation => Innovation

EDSF: How CF-DS was constructed

- Background: Standards and Best Practices
- Jobs market analysis: Demanded Data Science Competences and Skills

- e-CFv3.0 European e-Competence Framework for IT
 - Structured by 4 Dimensions and organizational processes
 - Competence Areas: Plan Build Run Enable Manage
 - Competences: total defined 40 competences
 - Proficiency levels: identified 5 levels linked to professional education levels
 - Skills and Knowledge
- CWA 16458 (2012): European ICT Professional Profiles Family Tree
 - Defines 23 ICT profiles for common ICT jobs
- ESCO (European Skills, Competences, Qualifications and Occupations) framework
 - Standard for European job market since 2016
 - Expected inclusion of the Data Science occupations family end 2017
- ACM Classification of Computer Science CCS (2012)
- ACM Computer Science Body of Knowledge (CS-BoK) and ACM and IEEE Computer Science Curricula 2013 (CS2013)

- e-CFv3.0 European e-Competence Framework
 - Structured by 4 Dimensions and
- Currently work on e-CF4 is moved to CEN TC 428 To be extended with Data Science competences Competer - ivianage ievels: identified 5 levels linked to professional education levels
 - Skills and Knowledge
- CWA 16458 (2012): European ICT Professional Profiles Family Tree
 - Defines 23 ICT profiles for common ICT jobs
- ESCO (European Skills, Competences, Qualifications and Occupations) framework
 - Standard for European job market since 2016
 - Expected inclusion of the Data Science occupations family end 2017
- ACM Cla New Joint Initiative ACM, IEEE, ASA, AAAS, AIS, ACH CM and ACM Co To develop Data Science curriculum IEEE Computer Science Curricula 2010

Jobs market analysis: Demanded Data Science Competences and Skills

- Initial Analysis (period Aug Sept 2015) -> Continuous monitoring (in development)
 - IEEE Data Science Jobs (World but majority US)
 - Collected > 120, selected for analysis > 30
 - LinkedIn Data Science Jobs (NL)
 - Collected > 140, selected for analysis > 30
 - Existing studies and reports + numerous blogs & forums
- Analysis methods
 - Data analytics methods: classification, clustering, feature extraction
 - Research methods: Data collection Hypothesis Artefact -Evaluation
 - Expert evaluation by EDISON Liaison Groups (ELG), multiple workshops

Skills and Capacity Management Challenges Addressed by EDSF

- 1. Guide researchers in using right methods and tools, latest Data Analytics technologies to extracting value from scientific data
- 2. Educate and train RI engineers dev to build modern data intensive research infrastructure and understand trends and project for future
- 3. Develop new data analytics tools and ensure continuous improvement (agile model, DevOps)
- 4. Correctly organise and manage data, make them accessible (adhering FAIR principles), education new profession of Data Stewards
- 5. Help managers to facilitate career dev for researchers and organise effective teams
- 6. Ensure skills and expertise sustain in organisation
- 7. Help research institutions to sustain in competition with industry and business in data science talent hunting