GAAA-AuthZ/GT4-AuthZ Gap analysis
or
Authorisation for Complex service provisioning and Collaborative applications

AuthZ Workshop Panel, GGF16
16 February 2006, Athens

Yuri Demchenko <demch@science.uva.nl>
System and Network Engineering Group
University of Amsterdam
Main topics

- Bootstrapping – Answering some workshop’s topics and concerns
- Gap analysis: scope and document
- GT4-AuthZ as basic AuthZ platform for Grid and Web Services based applications
- GAAA-AuthZ extensions and planned addition to GT4-AuthZ
- Building compatibility and interoperability based on common AuthZ framework
Answering some workshop’s topics and concerns

- **LCG:** Authorised session notion in Proxy containing VOMS credentials is rather identity based session
 - no action, or capability, and no resource and policy reference
 - => Generic AuthZ ticket and Session management
- **Biomed:** Fine-grained access control with ACL
 - ACL always contains local security and resource context
 - => Will benefit from separately managed policy explicitly defining Resource
- **DK:** “When security is too hard, people turn it off!”
 - => “When implementing/debugging security solution is too hard, developers will do it in their own way”
Gap analysis – Scope and document

- Two use cases and related requirements to AuthZ service
 - OLP provisioning as an example of complex resource provisioning (OLPP)
 - Grid based Collaborative Environment/applications (GCE)
- Analysis of existing solutions for Authorisation and related services
 - GT4-AuthZ, Acegi, GAAA-AuthZ
 - Attributes and security associations management: Shibboleth, VO and VOMS
 - Workflow management and driving policies
- Extending GAAA-AuthZ framework
- Document location (temporal):
 Yuri Demchenko, Leon Gommans, Bas van Oudenaarde.
OLP provisioning operation – Simple multidomain model

Step 1. The application broker or user client requests from the lookup services (LS) a path to a target system or resource

Step 2. Building/calculation of the interdomain connection between User and Resource domains with specific parameters

Step 3. Reservation of calculated path
- Agent based allocation
- Hop-by-hop allocation

Step 4. Provision reserved OLP
- Reservation ticket is used
- Fall-back conditions
Workflow and security context in GCE

Workflow manager drives an experiment and provides changing security context to Access Control service
- Adds stateful service and security context management to stateless Web Services

Collaboratory.nl project example
- Enterprise
- Facility/Instrument
- Virtual Lab
- Experiment/Instrument
- Stages
 - Setup
 - Experiment
 - Data processing
 - Reporting
Extending GAAA Authorisation Framework for OLPP and GCE

- GAAA AuthZ framework – two basic profiles are defined
 - GAAA-RBAC for Collaborative Environment
 - GAAA-P for interdomain network/resource provisioning
- Major GAAA-P components/extensions
 - Workflow control in the GAAA based provisioning model
 - WSFL and WSBPEL as upper layer to (stateless) WS/WS-Security
 - Dynamic trust management using federated trust model
 - Based on dynamic VO federation model
 - Compatibility with GridShib-SAAS
 - Attributes and metadata resolution and mapping
 - Support of common naming scheme and resolution
 - Policy combination and aggregation
 - For complex multi-component and multidomain resources
 - For combined policy audit/evaluation
GT4 Authorisation Framework

- Can potentially be configured for Container, Message, Service/Resource
 - But all based on SOAP/Axis message processing
- Authorisation is tied to SOAP message processing by Axis interceptor
- AuthZ processing sequence includes
 - Bootstrapping X.509 PIP – retrieves request parameters from the message
 - Subject, Resource, Action
 - Sequence of pre-configured PIP’s, including SAML
 - Sequence of (specialised) PDP’s
 - AuthZ engine combines PDP decisions using one of combination algorithms
- Available PDP’s
 - ACL and GridMap
 - HostAuthorization and UserNameAuthorization
 - SAML AuthZ callout and SAML AuthZ Assertion
 - SelfAuthorization – based on shared/trusted Resource credentials
 - Simple XACML PDP (provided as a placeholder for extension)
Extending GAAA Toolkit - Adding new functionality to GT4-AuthZ

- Specific functionality provided by GAAA-AuthZ Toolkit
 - Authorisation Session handling
 - Authorisation tickets and tokens handling for performance optimisation
 - Complex XACML policies evaluation to provide fine-grained access control
 - Flexible trust domains and request/attributes semantics configurations and management

- Integration with GT4 and gLite Authorisation Framework
 - Using GT4 WS/messaging firmware to provide WS-based access to GAAA_tk authorisation service, to allow easy GAAA_tk integration into different applications
 - Adding GAAA AuthZ callouts to GT4/gLite AuthZ framework; this will allow using GAAA RBE as one of regular services for GT4 and gLite
 - Integrating GAAA AuthZ/RBE into GT4 AuthZ framework as one of PDP’s
Building compatibility and interoperability based on common AuthZ framework

- Using, learning and promoting GT4-AuthZ
- OGSA-AuthZ Working Group
- Mapping between different AuthZ frameworks
- XACML policy format as a way to interchangeable policies
- Common or mapped attributes semantics
Additional information and graphics

- Extended GAAA Toolkit structure
- Tickets/_tokens handling with Triage
- Authorisation in complex Resource/Service
- Authorisation in GCE
Extended GAAA Toolkit structure
Tickets/Tokens handling in AuthZ system

- AuthzTicket is issued by PDP and may be issued by PEP
- AuthzTicket must be signed
- AuthzTicket contains all necessary information to make local PEP-Triage Request verification
- When using AuthzTokens, AuthzTickets must be cached; Resolution mechanism from token to ticket must be provided
Authorisation in complex Resource/Service

Complex/multi-component resource
Combined push and agent model
Authorisation in GCE