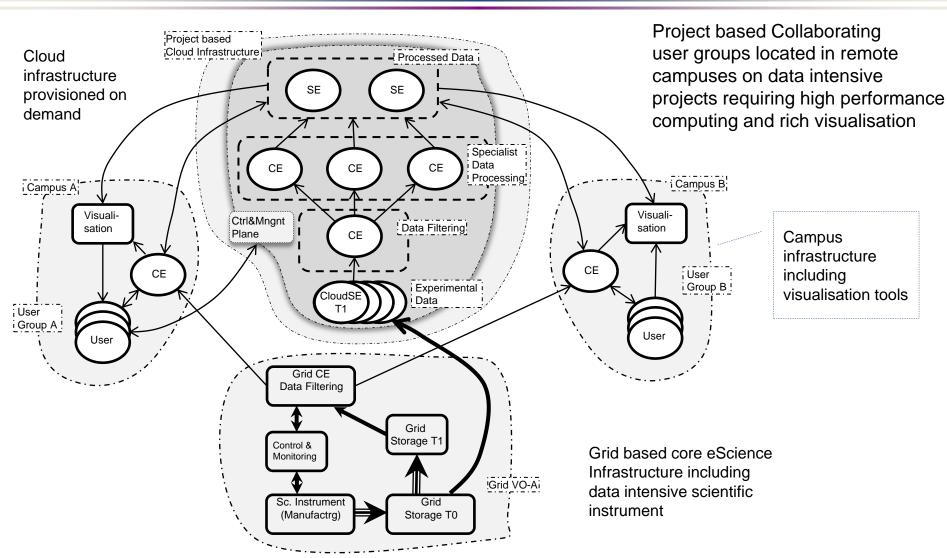


Defining Generic Architecture for Cloud Infrastructure as a Service (IaaS) Provisioning Model

Yuri Demchenko, Cees de Laat SNE Group, University of Amsterdam

ISGC2011 Conference 22-25 March 2011, Taipei

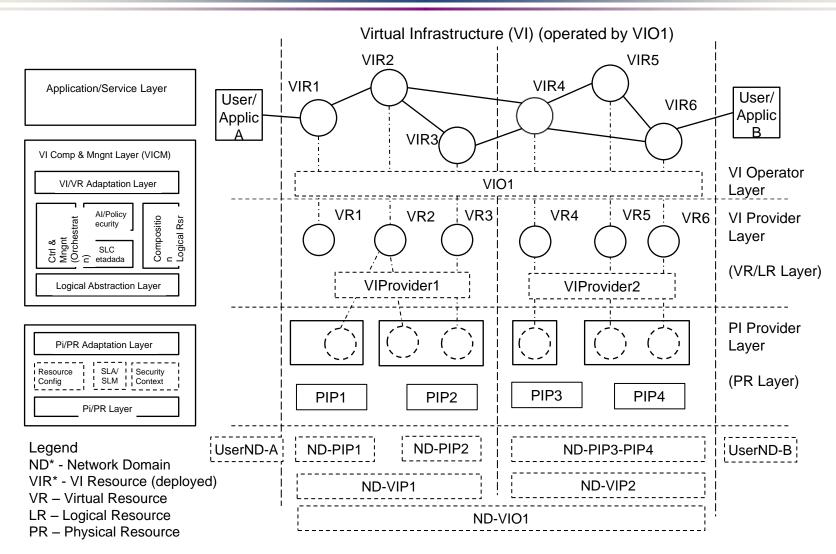
- System and Network Engineering (SNE) Group at the University of Amsterdam
- Basic use case from e-Science
- Proposed architectural framework
 - Infrastructure Services Modeling Framework (ISMF)
 - Composable Services Architecture (CSA)
 - Service Delivery Framework (SDF)
- Security aspects in Cloud computing
 - Security Services Lifecycle Management (SSLM) model



System and Network Engineering (SNE) Group at University of Amsterdam

- SNE group is primarily a research group but also supports SNE master education
- Main research areas
 - High speed optical networks
 - Recent testbed achieved sub-40Gbps at Amsterdam-CERN link
 - Information modeling for network and infrastructure services description
 - Security and generic AAA Authorisation framework (GAAA-AuthZ)
 - · Evolving from client/security model to dynamically provisioned services
- Long term research cooperation with SURFnet and GigaPort programs in NL
- Re-building own testbed for optical network technologies, Cloud experiments and AAA/Security
- Recent and current projects participation DatGrid, NextGrid, EGEE, Phosphorus, GEYSERS, GEANT3, NOVI
- Interest to Cloud technologies as an emerging common method to access complex infrastructure services – network and IT resources
 - Defining architectural framework for Cloud laaS
 - Extending it for infrastructure security services and related security and trust models

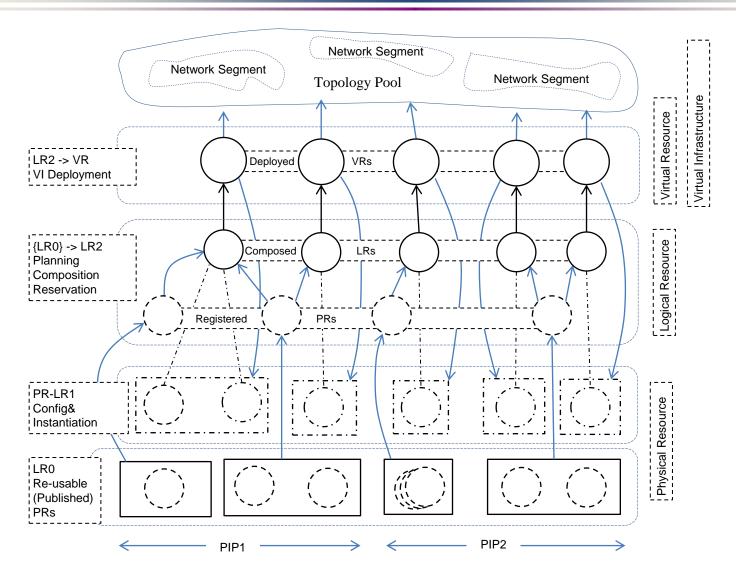
Use case for Infrastructure Services Provisioning


Proposed Architectural Framework for Cloud IaaS

The proposed framework should support on-demand infrastructure services provisioning and operation

- Infrastructure Services Modeling Framework (ISMF) that provides a basis for the infrastructure resources virtualisation and management, including description, discovery, modeling, composition and monitoring
- Composable Services Architecture (CSA) that intends to provide a conceptual and methodological framework for developing dynamically configurable virtualised infrastructure services
- Service Delivery Framework (SDF) that provides a basis for defining the whole composable services life cycle management and supporting infrastructure services
- (Optionally) Service Control and Management Plane/Framework may be defined as combination of management functionality in all 3 components
- Security services/infrastructure have a dual role:
 - Virtual Security Infrastructure provisioned as a part of virtualised infrastructure
 - Support normal/secure operation of the whole provisioning framework

laaS Abstract Model



Virtual Infrastructure Composition and Management (VICM) Layer Operation

- Main actors involved into provisioning process
 - Physical Infrastructure Provider (PIP)
 - Virtual Infrastructure Provider (VIP)
 - Virtual Infrastructure Operator (VIO)
- Virtual Infrastructure Composition and Management (VICM) layer includes
 - VICM middleware defined as CSA
 - Logical Abstraction Layer and the VI/VR Adaptation Layer facing correspondingly lower PIP and upper Application layer.
- The infrastructure provisioning process includes the following main SDF stages
 - (1) virtual infrastructure creation request
 - (2) infrastructure planning and advance reservation;
 - (3) infrastructure deployment including services synchronization and initiation;
 - (4) operation stage
 - (5) infrastructure decommissioning
- VICM redefines Logical Infrastructure Composition Layer (LICL) proposed by GEYSERS project
 - Basic functionality is implemented as GEMBus/CSA

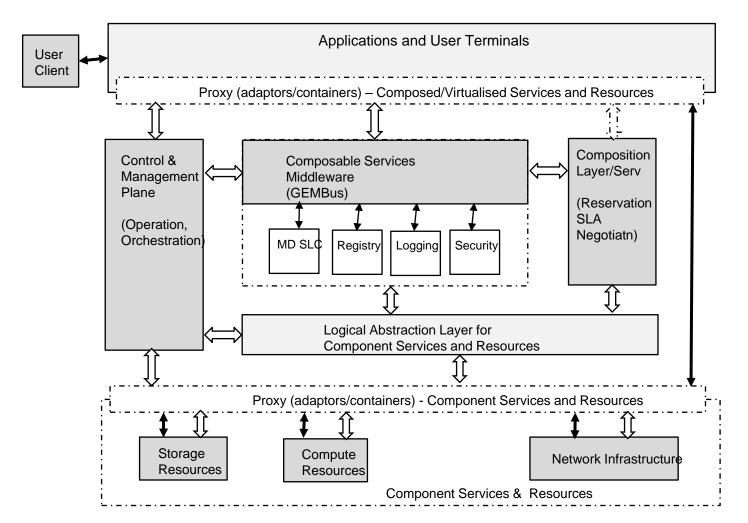
ISMF – Virtual Resource Lifecycle

ISMF - Relation between PR-LR-VR-VI

- Virtual Resource lifecycle defines relations between different resource presentations along the provisioning process
- Physical Resource information is published by PIP to the Registry service serving VICM and VIP
 - Logical Resource representing PR includes also properties that define possible (topological) operations on the PR, such as e.g. partitioning or aggregation.
- Published LR information presented in the commonly adopted form (using common data or semantic model) is then used by VICM/VIP composition service to create requested infrastructure as combination of (instantiated) Virtual Resources and interconnecting them with the available network infrastructure
- Network infrastructure can be composed of a few network segments (from the network topology pool) run by different network providers.
- Composed LRs are deployed as VRI/VI to VIP/VIO and as virtualised/instantiated PR-LR to PIP
- Resource/service description format considered
 - NDL/NML (Network Description Language / Network Markup Language at OGF)
 - USDL (Unified Services Description Language) at W3C
 - VXDL infrastructure service request format by INRIA

Composable Services Architecture (CSA)

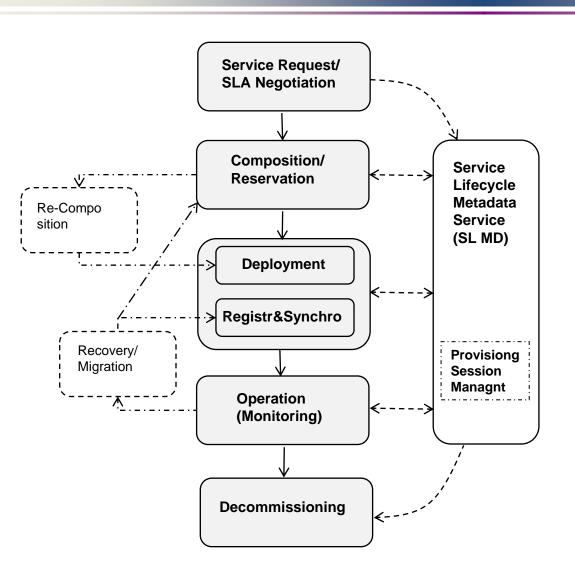
- Defined as middleware for on-demand provisioned Composable Services
- Proposed in the GEANT3 JRA3 Composable Services project
- Implemented as GEMBus (GEANT Multidomain Bus)


Composable Services Layered Model

Application Layer					
Virtualisation Layer					
Composition & Orchestration Layer					
Logical Abstraction Layer					
Messaging Layer					
Network&Transport Layer					

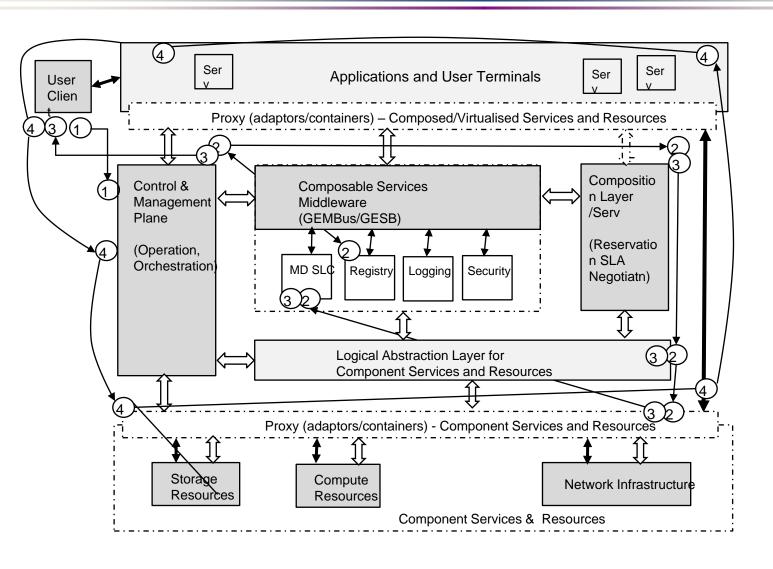
- Application Layer hosts application related protocols
- GEMBus Messaging Infrastructure (GMI) includes
 - Messaging Layer
 - Virtualisation (Composition&Orchestration) Layer
- Network&Transport Layer should allow using/binding to standards communication and security protocol
- Composable services are defined as "dynamically re-configured virtualised services" according to OSIMM model

Composable Services Architecture – Version 0.13



Composable Services lifecycle/provisioning stages

- (1) Request
- (2) Composition/ Reservation
- (3) Deployment
- (4) Operation
- (5) Decommissioning


Composable Services Lifecycle/Provisioning Workflow

- Main stages/phases
 - Service Request (including SLA negotiation)
 - Composition/Reservation (aka design)
 - Deployment, including Registration/Synchronisation
 - Operation (including Monitoring)
 - Decommissioning
- Additional stages
 - Re-Composition should address incremental infrastructure changes
 - Recovery/Migration can use SL-MD to initiate resources resynchronisation but may require re-composition
- The whole workflow is supported by the Service Lifecycle Metadata Service (SL MD)

Composable Services Architecture – Version 0.13 Lifecycle stages workflow

Composable Services lifecycle/provisioni ng stages

- (1) Request
- (2) Composition/ Reservation
- (3) Deployment
- (4) Operation
- (5) Decommissioning

MD SLC – Service Lifecycle Metadata

GEMBus – GEANT Multidomain Bus

GESB – Geysers ESB

Control/ Mngnt Links

Data Links

CSA functional elements interaction

(1) Request

User Client -> Control and Management

(2) Composition/ Reservation

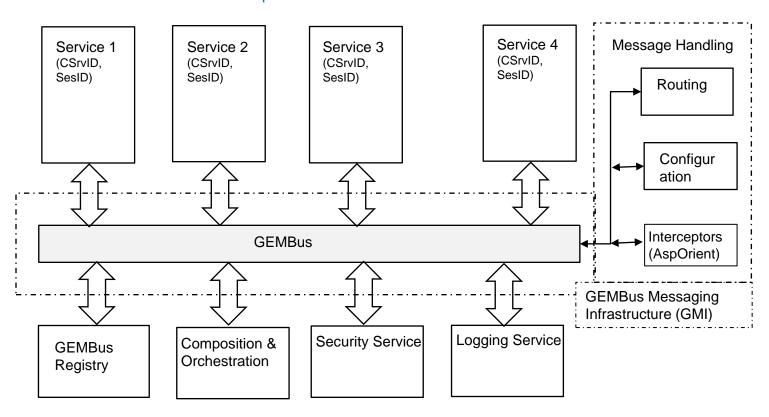
 Control&Mngnt -> Registry -> Composition/Reservation Serv -> (Logical Abstract -> Resr Adapters) -> LC Metadata Serv

(3) Deployment

 Control&Mngnt -> Composition/Reservation Serv -> (Logical Abstract -> Resr Adapters) -> LC Metadata Serv -> User Client

(4) Operation

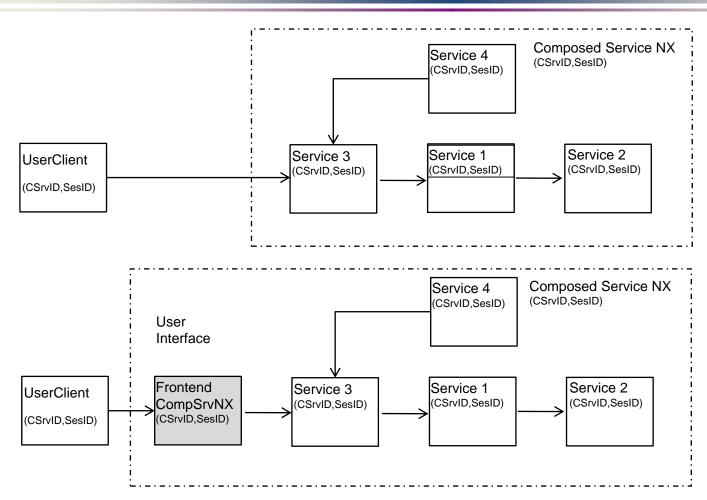
 User Client -> Control&Mngnt (Orchestration) -> Rsr Adapters -> Virtualised/Composed Applications


(5) Decommissioning

Control&Mngnt -> LC Metadata Serv -> (Logical Abstract -> Resr Adapters)

GEMBus Infrastructure for Composable Service

GEMBus Component Services



GEMBus Infrastructure Services

GEMBus provides common dynamically configurable messaging infrastructure for Composable services communication

Example Service Composition – Service NX

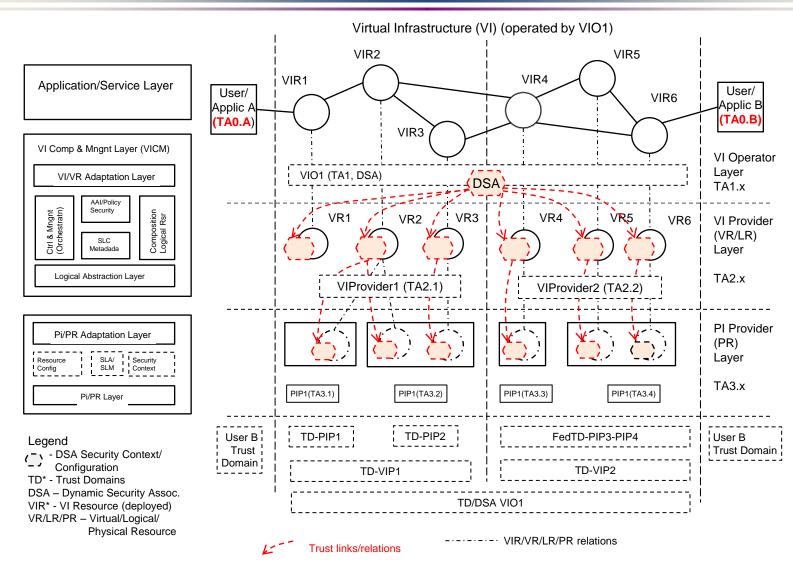
Role and place for Composition and Orchestration

* Composable services or GEMBus infrastructure service

 CSrvID, SesID – bind component services into the on-demand provisioned Composed service NX

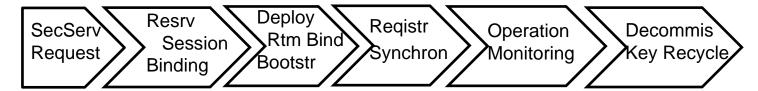
Cloud Security – Problem area and issues

- Virtualised services
- On-demand/dynamic provisioning
- Multi-tenant/multi-user
- Multi-domain
- Uncontrolled execution and data storage environment
 - Data protection
 - Trusted Computing Platform Architecture (TCPA)
 - Promising homomorphic/elastic encryption
- Integration with legacy security services/infrastructure of the providers
- Integration with the providers business workflow



Current Cloud Security Model

- SLA based security model
 - SLA between provider and user defines the provider responsibility and guarantee
 - Providers undergo certification
 - Standard business model
- Using VPN and SSH keys generated for user infrastructure/VMs
 - Works for single Cloud provider
- Has inherited key management problems
- Not easy integration with legacy physical resources
- Not scalable
- Simple access control, however can be installed by user
- Trade-off between simplicity and manageability


Security Infrastructure for IaaS

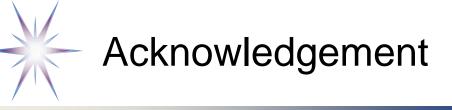
Security Services Lifecycle Management Model

A) Security Service Lifecycle

B) Service Lifecycle

Specific SSLM stages and mechanisms to ensure consistency of the security context management

- Security Service Request that initiates creation of the dynamic security association and may use SLA security context.
- Reservation Session Binding with GRI (also a part of general SDF/SLM) that provides support for complex reservation process including required access control and policy enforcement.
- Registration&Synchronisation stage (as part Deployment stage) that allows binding the local resource or hosting platform run-time process ID to the GRI as a provisioning session ID. Specifically targets possible scenarios with the provisioned services migration or restoration.

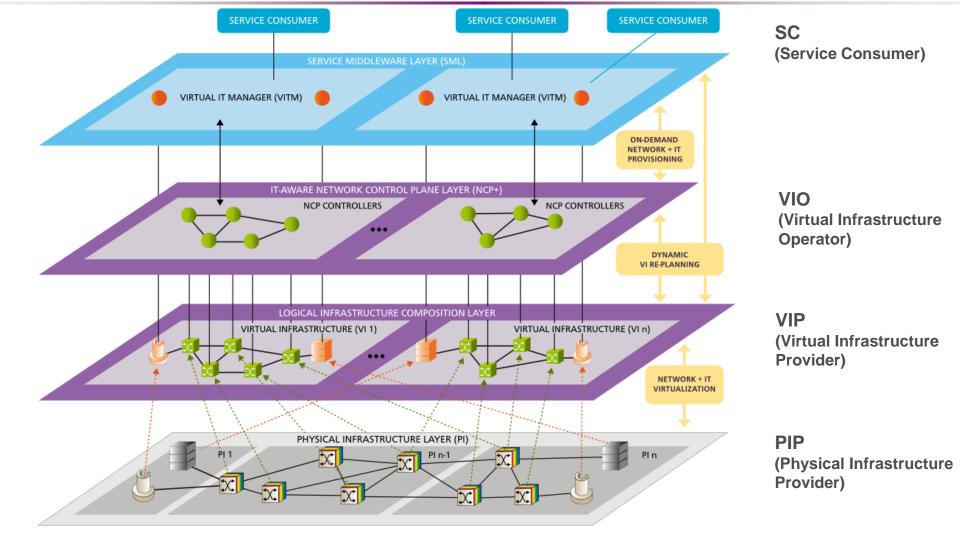

Relation between SSLM/SLM stages and supporting general and security mechanisms

SLM stages	Request	Design/Reservation Development	Deployment	Operation	Decomissio ning	
Process/ Activity	SLA Nego tiation	Service/ Resource Composition Reservation	Composition Configuration	Orchestration/ Session Management	Logoff Accounting	
Mechanisms/Methods						
SLA	V				V	
Workflow		(V)		V		
Metadata	V	V	V	V		
Dynamic Security Associatn		(V)	V	V		
AuthZ Session Context		V	(V)	V		
Logging		(V)	(V)	V	V	

Future developments

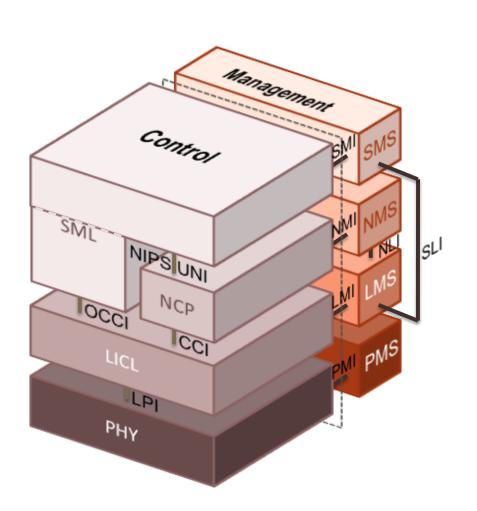
- Further development of the proposed architectural components in GEANT3 and GEYSERS projects
 - Demo at SuperComputing 2011 Conference and exhibition
- Dynamically provisioned security infrastructure
 - Dynamic security association
- Contribution to OGF ISOD-RG activity
- EU wide cooperation and possible EU project

•This work is supported by the FP7 EU funded project GEANT3 (FP7-ICT-238875), and the FP7 EU funded Integrated project The Generalised Architecture for Dynamic Infrastructure Services (GEYSERS, FP7-ICT-248657).



Additional Information

GEYSERS project reference architecture



GEYSERS Reference Architecture

GEYSERS Layered Architecture

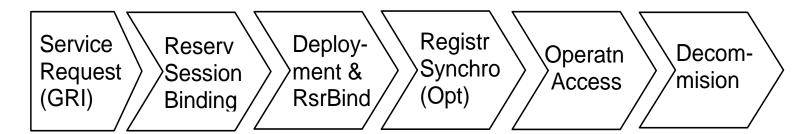
Control and Management Planes are defined

• Important for consistent design

_

Management Interfaces

Control Interfaces


General security services/aspects

- ✓ Access Control (including AuthN, AuthZ, Identity Management)
- ✓ Trust Management (including key management)
- √ Policy Based Management (PBM)
- Data protection (Confidentiality, Integrity, Access Control)
- Communication Security
- Privacy (complex of measures and policy based access control)

Security Services Lifecycle Management (SSLM) Model

- Security Service request and generation of the GRI that will serve as a provisioning session identifier and will bind all other stages and related security context.
- Reservation session binding that provides support for complex reservation process including required access control and policy enforcement.
- **Deployment stage** begins after all component resources have been reserved and includes distribution of the security context and binding the reserved resources or services to GRI as a common provisioning session ID.
- Registration&Synchronisation stage (optional) specifically targets possible scenarios with the provisioned services migration or failover/interruption. In a simple case, the Registration stage binds the local resource or hosting platform run-time process ID to the GRI as a provisioning session ID.
- Operation stage security services provide access control to the provisioned services and maintain the service access or usage session.
- **Decommissioning** stage ensures that all sessions are terminated, data are cleaned up and session security context is recycled.

SNE @ UvA take on Cloud technology

- Defining architectural framework for Cloud Infrastructure as a Service (laaS) provisioning model
 - Consistent security architecture can only be built if the main system/services/infrastructure are well defined
- Defining architecture for dynamically configured security services/infrastructure
- OGF On-Demand Infrastructure Service (ISOD) provisioning BoF/RG
 - Including definition of laaS and required security models