

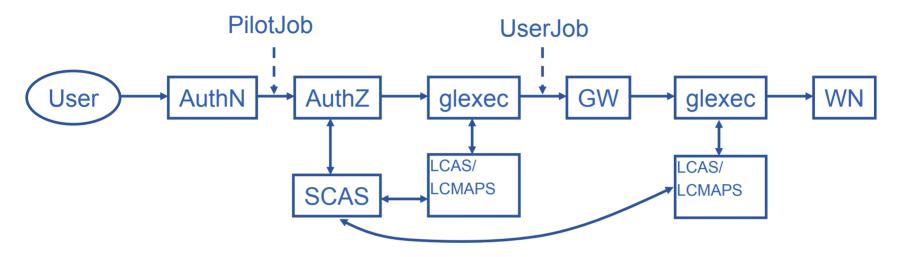
Enabling Grids for E-sciencE

Policy Obligations Bridging two fundamental security concepts

JRA1 All-Hands, NIKHEF, 20-22 February 2008

Yuri Demchenko SNE Group, University of Amsterdam

www.eu-egee.org www.glite.org



Obligations for Interoperability in Grid

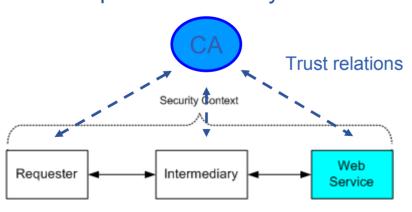
- Part of the site centric SCAS based AuthZ infrastructure
- One of the main focuses of the AUTHZ-INTEROP initiative between OSG-EGEE-GT
 - List of Obligations and their semantics
 - SAML-XACML Extension Library for OpenSAML2.0
- Other components
 - Obligations Handling Reference Model (OHRM)
 - Obligation Handler API and SAML-XACML design document
 - to be finalised
 - XACML Conformance test for typical and registered Obligations
 still to be done
- Another outcome
 - IMHO, indicated a need for Grid security architecture and model re-thinking

Obligations and Pilot job use cases

- Introducing SCAS as external AuthZ service called from protected environment changes simple security model
 - AuthN-AuthZ-glexec flow needs analysis
 - Behind each (SCAS) policy should be clear operational model
- SCAS is verified to be compatible with the XACML policy and PDP
 - XACML uses pluggable security service model (i.e. called from major Service)
 - glexec is a kind of gateway/border device

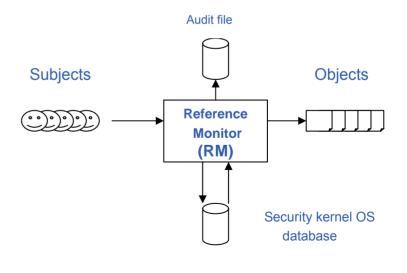
Obligations in Access Control and Management

- Access control in Grid and Policy Obligations
 - Account mapping
 - Quota assignment
 - Environment setup/configuration
- General Complex Resource provisioning
 - Fixed, Time-flexible, Malleable/"Elastic" Scheduling
 - Usable Resource
- Other/general
 - Accounting, Logging, Delegation
- Obligations in access control and policy based management
 - Obligated policy decision
 - Provisional policy decision



OSI-Security vs TCB Security

Enabling Grids for E-sciencE


Open Systems and Internet

- Open Systems Interconnection (OSI) Security Architecture
 - ISO7498-2/X.800
- Independently managed interconnected system
- Trust established mutually or via 3rd party
- PKI and PKI based AuthN and key exchange
- Concept of the Security Context

Trusted Computing Base (TCB)

- Reference Monitor (RM) by J.P.Anderson "Computer Security Planning Study" (1972)
- Models Bell-LaPadula and Biba
- Certification criteria
 TCSEC/Common Criteria (1984)
 - A1, B1, B2, B3, C1, C2, D



X.800/OSI Security – Layers vs Services vs Mechanisms

Mechanism -> Service	Encipherm ent	Digital signature	Access control	Data integrity	Authenticatio n exchange	Traffic padding	Routing control	Notarization
Authentication, Peer entity	Υ	Υ			Υ			
Authentication, Data origin	Υ	Υ						
Access control service	Υ		Υ					
Connection confidentiality	Υ						Υ	
Connectionless confidentiality	Y						Y	
Selective field confidentiality	Y							
Traffic flow confidentiality	Y					Y	Y	
Connection Integrity with recovery	Y			Y				
Connection integrity without recovery	Y			Y				
Selective field connection integrity	Y			Y				
Connectionless integrity	Υ	Υ		Υ				
Selective field connectionless integrity	Y	Y		Y				
Non-repudiation. Origin		Υ		Υ				Υ
Non-repudiation. Delivery		Y		Y			1	Υ

Service	Layer									
	1	2	3	4	5	6	7*			
Peer entity authentication			Υ	Υ			Υ			
Data origin authentication			Υ	Υ			Υ			
Access control service			Υ	Υ			Υ			
Connection confidentiality	Υ	Υ	Υ	Υ		Υ	Υ			
Connectionless confidentiality		Y	Y	Y		Y	Y			
Selective field confidentiality						Υ	Y			
Traffic flow confidentiality	Υ		Υ				Υ			
Connection Integrity with recovery				Y			Y			
Connection integrity without recovery			Y	Y			Y			
Selective field connection integrity							Υ			
Connectionless integrity			Υ	Υ			Υ			
Selective field		\top				\top	Υ			
connectionless integrity										
Non-repudiation Origin							Υ			
Non-repudiation. Delivery							Υ			

- Similar model should be probably proposed for WS SOAP based security services and mechanisms
- Layers model for above Application layer are uncertain

From OSI/Internet to SOA/WSA Security Model

- X.800 Security Architecture for Open Systems Interconnection for CCITT applications. ITU-T (CCITT) Recommendation, 1991
 - ISO 7498-2:1989 Information processing systems -- Open Systems
 Interconnection -- Basic Reference Model -- Part 2: Security Architecture
- Web Services Security Roadmap (2002)
 - http://www.ibm.com/developerworks/library/specification/ws-secmap/
- OGSA Security Model Components (2002-2006)
 - GFD.80 OGSA version 1.5,
 Section 3.7 Security Services
 - Re-states Web Services
 Security roadmap
- WS-Security stds specify using SOAP header for security related issues
 - Considered as orthogonal to major service

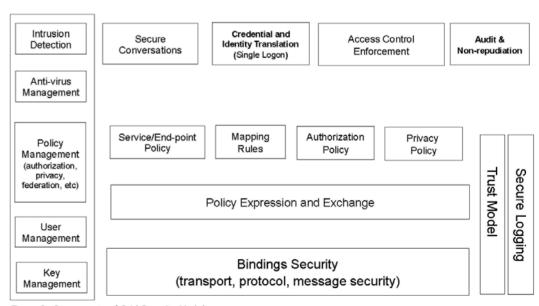
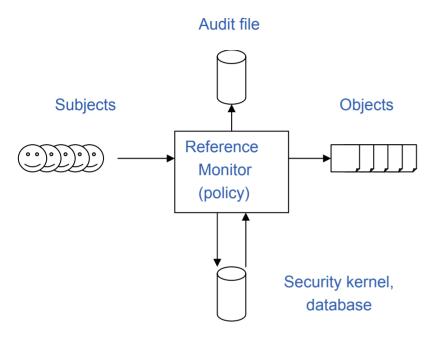



Figure 2: Components of Grid Security Model

Reference Monitor (RM) Concept

Enabling Grids for E-sciencE

Proposed by J.P. Anderson in the report "Computer Security Planning Study" (1972)

RM property provides a basis for Multi-Level Security (MLS)

- Complete mediation: The security rules are enforced on every access, not just, for example, when a file is opened.
- Isolation: The reference monitor and databases must be protected from unauthorized modification.
- Verifiability: The reference monitor's correctness must be provable. That is, it must be possible to demonstrate mathematically that the reference monitor enforces the security rules and provides complete mediation and isolation.
- RM concept is a basis for TCB certification

Multi-Level Security Models

Enabling Grids for E-sciencE

- Bell–LaPadula (BLP) model
 - No write down
 - No read up
- Focus Confidentiality
 - Mandatory Access Control
- Applicability Data
- Known flaw not protected against insider "worm" virus

- Biba model
 - No write up
 - No read down
- Focus Integrity
- Applicability (Open) Data and Control/Mngnt

TCSEC Common Criteria

- A1 B3 + formally/mathematically verified design
- B1-B3 Multilevel security, Formal security model, Mandatory AC
- C1-C2 Discretionary access control model, auditable user activity
- D minimal protection
- Currently replaced by ISO 15408 Evaluation Assurance Level (EAL)

TCSEC/ISO Common Criteria

Enabling Grids for E-sciencE

TCSEC Certification Criteria

- A1 B3 + formally/mathematically verified design
- B3 Clear security model and layered design, Security functions tamperproof, Auditing mandatory
- B2 Least-privilege access control model, Certifiable security design implementation, Covert channels analysis
- B1 Labelled security protection, MAC-BLP + DAC
- C2 Discretionary access control model, auditable user activity
- D minimal protection

Currently replaced by ISO 15408 Evaluation Assurance Level (EAL)

- EAL1: Functionally Tested
- EAL2: Structurally Tested
- EAL3: Methodically Tested and Checked
- EAL4: Methodically Designed, Tested and Reviewed
- EAL5: Semiformally Designed and Tested
- EAL6: Semiformally Verified Design and Tested
- EAL7: Formally Verified Design and Tested

EAL1-4 – commercial systems, EAL5-7 - special systems (EAL4 circa C2)

Windows NT (EAL4+) and many routing and Unix systems certified for EAL4

Clark – Wilson Integrity Policy

Enabling Grids for E-sciencE

Criteria for achieving data integrity (primary target for reliable business operation)

- Authentication of all user accessing system
- Audit all modifications should be logged
- Well-formed transactions
- Separation of duties

Enforcement Rules

- E1 (Enforcement of Validity) Only certified TPs can operate on CDIs
- **E2 (Enforcement of Separation of Duty)** Users must only access CDIs through TPs for which they are authorized.
- E3 (User Identity) The system must authenticate the identity of each user attempting to execute a TP
- E4 (Initiation) Only administrator can specify TP authorizations

Certification Rules

- C1 (IVP Certification) The system will have an IVP for validating the integrity of any CDI.
- **C2 (Validity)** The application of a TP to any CDI must maintain the integrity of that CDI. CDIs must be certified to ensure that they result in a valid CDI
- C3 A CDI can only be changed by a TP. TPs must be certified to ensure they implement the principles of separation of duties & least privilege
- C4 (Journal Certification) TPs must be certified to ensure that their actions are logged
- C5 TPs which act on UDIs must be certified to ensure that they result in a valid CDI

TP – transformational procedure; IVP – integrity verification procedure; CDI – constrained data Item; UDI - unconstrained data Item

Grid Security Model(s) – Still to be created?

Enabling Grids for E-sciencE

Strong&consistent AthN is a good principle, BUT

- Can be considered as sufficient only if a subject logs in the trusted environment (like server/UNIX)
- There other security aspects

Use TCB (Secure OS) design principles

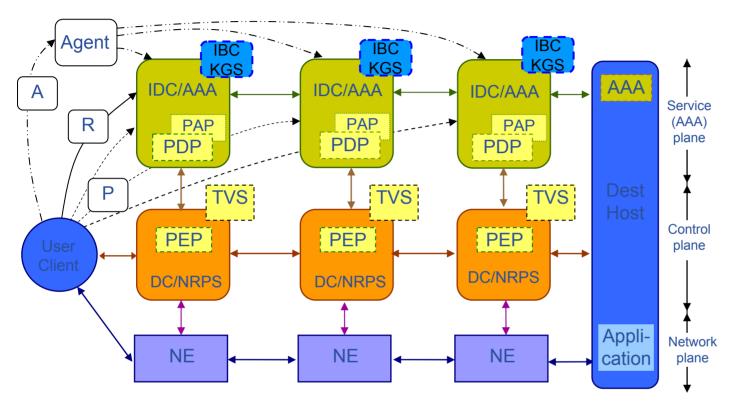
- Layered design
 - Hardware, kernel, OS, user
 - Most sensitive operations in the (resource) innermost circle

Introduce security zones model

- AuthN, (Delegation,) AuthZ, (AuthZ Session,) glexec/Unix
- Keep security context
- Use AuthZ session management concept and security mechanisms

Other Grid Security specifics Open list

- Re-factoring policy-based access control to policy-based object management
 - Many use cases in Grid job processing workflow fit better into generic policy based object management than to access control
 - Policy (and access conditions) are attached to the object (i.e. job) at its invocation and checked locally by glexec or RM
- Virtualisation
 - Provides specific operational and security environment for security services
- Trusted Computing Platform Architecture (TCPA)
 - Provides a basis for inter-connecting trusted computing hosts/environments
 - Defines Trusted Network Connect framework (TNC)
 - Allows combination with the Virtualisation platform to extend usertrusted environment to remote hosts


Identity Based Cryptography (IBC)

- Uses publicly known remote entity's identity as a public key to send encrypted message or initiate security session
 - Initially proposed by Shamir in 1984 as an alternative to PKI
 - Shamir is one of the RSA inventors in 1977 (Rivest, Shamir, Adleman)
 - Identity can be email, domain name, IP address
 - Allows conditional private key generation
- Requires infrastructure different from PKI but domain based (doesn't require trusted 3rd party outside of domain)
 - Private key generation service (KGS)
 - Generates private key to registered/authenticated users/entities
 - Exchange inter-domain trust management problem to intradomain trust

Using IBC for key distribution in multidomain NRP

Enabling Grids for E-sciencE

Provisioning sequences

- Agent (A)
- Polling (P)
- Relay (R)

Token based policy enforcement

- GRI Global Reservation ID
- AuthZ tickets for multidomain context mngnt

NRPS – Network Resource Provisioning System

DC – Domain Controller

IDC – Interdomain Controller

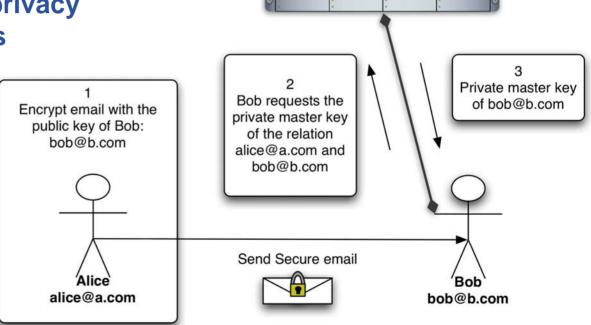
AAA – AuthN, AuthZ, Accounting Server

PDP – Policy Decision Point

PEP - Policy Enforcement Point

TVS – Token Validation Service

KGS – Key Generation Service



Identity Based Cryptography (IBC)

Enabling Grids for E-sciencE

Available implementations

- Voltage Identity-Based Encryption (C based)
 - Used in Microsoft Exchange Server
- Eyebee by Univ Ireland (Java)
 - Tested by us and will be implemented in IDC
- Strong motivation for privacy concerned applications
 - E.g. patient-doctor communication

Kev Server

Discussion and Future

- It was fun working for EGEE
- New security area with lot of unsolved problems
 - Some of them are becoming visible
 - Not resolving them or ignoring will result in non-consistent design or excessive work to address emerging problems
- Hope to meet you in other projects and at different meetings
 - Will be interested in future offers for partnership in research and projects
- Our research at SNEG/UvA will continue in the area of multidomain Complex Resource Provisioning (Grid enabled)
 - AuthZ and Security
 - Research on the Grid security model(s)