Policy Obligations - Bridging two fundamental security concepts

JRA1 All-Hands, NIKHEF, 20-22 February 2008

Yuri Demchenko
SNE Group, University of Amsterdam
• **Part of the site centric SCAS based AuthZ infrastructure**

• **One of the main focuses of the AUTHZ-INTEROP initiative between OSG-EGEE-GT**
 - List of Obligations and their semantics
 - SAML-XACML Extension Library for OpenSAML2.0

• **Other components**
 - Obligations Handling Reference Model (OHRM)
 - Obligation Handler API and SAML-XACML design document
 – *to be finalised*
 - XACML Conformance test for typical and registered Obligations
 – *still to be done*

• **Another outcome**
 - IMHO, indicated a need for Grid security architecture and model re-thinking
• Introducing SCAS as external AuthZ service called from protected environment changes simple security model
 – AuthN-AuthZ-glexec flow needs analysis
 – Behind each (SCAS) policy should be clear operational model
• SCAS is verified to be compatible with the XACML policy and PDP
 – XACML uses pluggable security service model (i.e. called from major Service)
 – glexec is a kind of gateway/border device
• **Access control in Grid and Policy Obligations**
 - Account mapping
 - Quota assignment
 - Environment setup/configuration

• **General Complex Resource provisioning**
 - Fixed, Time-flexible, Malleable/”Elastic” Scheduling
 - Usable Resource

• **Other/general**
 - Accounting, Logging, Delegation

• **Obligations in access control and policy based management**
 - Obligated policy decision
 - Provisional policy decision
Open Systems and Internet

- Open Systems Interconnection (OSI) Security Architecture
 - ISO7498-2/X.800
- Independently managed interconnected system
- Trust established mutually or via 3rd party
- PKI and PKI based AuthN and key exchange
- Concept of the Security Context

Trusted Computing Base (TCB)

- Models Bell-LaPadula and Biba
- Certification criteria TCSEC/Common Criteria (1984)
 - A1, B1, B2, B3, C1, C2, D
X.800/OSI Security – Layers vs Services vs Mechanisms

Table: X.800/OSI Security – Layers vs Services vs Mechanisms

<table>
<thead>
<tr>
<th>Service</th>
<th>Layer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication, Peer entity</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authentication, Data origin</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access control service</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection confidentiality</td>
<td></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectionless confidentiality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective field confidentiality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Traffic flow confidentiality</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection integrity with recovery</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection integrity without recovery</td>
<td></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective field connection integrity</td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectionless integrity</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective field connectionless integrity</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-repudiation Orig.</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-repudiation Delivery</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Diagram: X.800/OSI Reference Model

- **authentication service**
- **access control**
- **data integrity**
- **data secrecy**
- **anti-DoS**

Points:
- Similar model should be probably proposed for WS SOAP based security services and mechanisms
- Layers model for above Application layer are uncertain
• Web Services Security Roadmap (2002)
• OGSA Security Model Components (2002-2006)
 – GFD.80 - OGSA version 1.5, Section 3.7 Security Services
 – Re-states Web Services Security roadmap
• WS-Security stds specify using SOAP header for security related issues
 – Considered as orthogonal to major service
Reference Monitor (RM) Concept

Proposed by J.P. Anderson in the report “Computer Security Planning Study” (1972)

RM property provides a basis for Multi-Level Security (MLS)

- **Complete mediation**: The security rules are enforced on every access, not just, for example, when a file is opened.
- **Isolation**: The reference monitor and databases must be protected from unauthorized modification.
- **Verifiability**: The reference monitor’s correctness must be provable. That is, it must be possible to demonstrate mathematically that the reference monitor enforces the security rules and provides complete mediation and isolation.

- RM concept is a basis for TCB certification
Multi-Level Security Models

- **Bell–LaPadula (BLP) model**
 - No write down
 - No read up
- **Focus** – Confidentiality
 - Mandatory Access Control
- **Applicability** – Data
- Known flaw – not protected against insider “worm” virus

- **Biba model**
 - No write up
 - No read down
- **Focus** – Integrity
- **Applicability** – (Open) Data and Control/Mngnt

- **TCSEC Common Criteria**
 - A1 – B3 + formally/mathematically verified design
 - B1-B3 – Multilevel security, Formal security model, Mandatory AC
 - C1-C2 – Discretionary access control model, auditable user activity
 - D – minimal protection
 - Currently replaced by ISO 15408 Evaluation Assurance Level (EAL)
• **TCSEC Certification Criteria**
 - A1 – B3 + formally/mathematically verified design
 - B3 – Clear security model and layered design, Security functions tamperproof, Auditing mandatory
 - B2 – Least-privilege access control model, Certifiable security design implementation, *Covert channels analysis*
 - B1 – Labelled security protection, MAC-BLP + DAC
 - C2 – Discretionary access control model, auditable user activity
 - D – minimal protection

• **Currently replaced by ISO 15408 Evaluation Assurance Level (EAL)**
 - EAL1: Functionally Tested
 - EAL2: Structurally Tested
 - EAL3: Methodically Tested and Checked
 - EAL4: Methodically Designed, Tested and Reviewed
 - EAL5: Semiformally Designed and Tested
 - EAL6: Semiformally Verified Design and Tested
 - EAL7: Formally Verified Design and Tested

• **EAL1-4 – commercial systems, EAL5-7 - special systems (EAL4 circa C2)**
 - Windows NT (EAL4+) and many routing and Unix systems certified for EAL4
Criteria for achieving data integrity (primary target for reliable business operation)

- Authentication of all user accessing system
- Audit – all modifications should be logged
- Well-formed transactions
- Separation of duties

Enforcement Rules

E1 (Enforcement of Validity) - Only certified TPs can operate on CDIs
E2 (Enforcement of Separation of Duty) - Users must only access CDIs through TPs for which they are authorized.
E3 (User Identity) - The system must authenticate the identity of each user attempting to execute a TP
E4 (Initiation) - Only administrator can specify TP authorizations

Certification Rules

C1 (IVP Certification) - The system will have an IVP for validating the integrity of any CDI.
C2 (Validity) - The application of a TP to any CDI must maintain the integrity of that CDI. CDIs must be certified to ensure that they result in a valid CDI
C3 - A CDI can only be changed by a TP. TPs must be certified to ensure they implement the principles of separation of duties & least privilege
C4 (Journal Certification) - TPs must be certified to ensure that their actions are logged
C5 - TPs which act on UDIs must be certified to ensure that they result in a valid CDI

TP – transformational procedure; IVP – integrity verification procedure; CDI – constrained data Item; UDI - unconstrained data Item
• **Strong&consistent AuthN is a good principle, BUT**
 – Can be considered as sufficient only if a subject logs in the trusted environment (like server/UNIX)
 – There other security aspects

• **Use TCB (Secure OS) design principles**
 – Layered design
 ▪ Hardware, kernel, OS, user
 ▪ Most sensitive operations in the (resource) innermost circle

• **Introduce security zones model**
 – AuthN, (Delegation,) AuthZ, (AuthZ Session,) glexec/Unix
 – Keep security context
 – Use AuthZ session management concept and security mechanisms
• Re-factoring policy-based access control to policy-based object management
 – Many use cases in Grid job processing workflow fit better into generic policy based object management than to access control
 ▪ Policy (and access conditions) are attached to the object (i.e. job) at its invocation and checked locally by glexec or RM

• Virtualisation
 – Provides specific operational and security environment for security services

• Trusted Computing Platform Architecture (TCPA)
 – Provides a basis for inter-connecting trusted computing hosts/environments
 – Defines Trusted Network Connect framework (TNC)
 – Allows combination with the Virtualisation platform to extend user-trusted environment to remote hosts
Identity Based Cryptography (IBC)

- Uses publicly known remote entity’s identity as a public key to send encrypted message or initiate security session
 - Initially proposed by Shamir in 1984 as an alternative to PKI
 - Shamir is one of the RSA inventors in 1977 (Rivest, Shamir, Adleman)
 - Identity can be email, domain name, IP address
 - Allows conditional private key generation
- Requires infrastructure different from PKI but domain based (doesn’t require trusted 3rd party outside of domain)
 - Private key generation service (KGS)
 - Generates private key to registered/authenticated users/entities
 - Exchange inter-domain trust management problem to intra-domain trust
Using IBC for key distribution in multidomain NRP

Provisioning sequences
- Agent (A)
- Polling (P)
- Relay (R)

Token based policy enforcement
- GRI – Global Reservation ID
- AuthZ tickets for multidomain context mgmt

NRPS – Network Resource Provisioning System
DC – Domain Controller
IDC – Interdomain Controller

AAA – AuthN, AuthZ, Accounting Server
PDP – Policy Decision Point
PEP – Policy Enforcement Point
TVS – Token Validation Service
KGS – Key Generation Service
Available implementations

- **Voltage Identity-Based Encryption (C based)**
 - Used in Microsoft Exchange Server

- **Eyebee by Univ Ireland (Java)**
 - Tested by us and will be implemented in IDC

- **Strong motivation for privacy concerned applications**
 - E.g. patient-doctor communication
It was fun working for EGEE

New security area with lot of unsolved problems
 - Some of them are becoming visible
 - Not resolving them or ignoring will result in non-consistent design or excessive work to address emerging problems

Hope to meet you in other projects and at different meetings
 - Will be interested in future offers for partnership in research and projects

Our research at SNEG/UvA will continue in the area of multidomain Complex Resource Provisioning (Grid enabled)
 - AuthZ and Security
 - Research on the Grid security model(s)