

### Cloud based Big Data Platforms and New Profession of Data Scientist

### Konferencję Użytkowników Komputerów Dużej Mocy – KU KDM'16 17 March 2016, Zakopane, Poland

Yuri Demchenko, University of Amsterdam

Cloud, Big Data and Data Science



- Big Data and Data Centric Computing
  - Need for new paradigms, architecture and platforms
- Cloud Computing as a platform of choice for Big Data applications
  - Big Data Stack and cloud advantages
  - Cloud platforms for Big Data
- Big Data, Data Science and Data Scientist profession definition
  - Data Science competences, skills and body of knowledge

Acknowledgement Slides on Big Data Stacks are credit to David Bernstein, Cloud Strategy Partners

# Yuri Demchenko – Professional Summary

- Graduated from National Technical University of Ukraine "Kiev Polytechnic Institute" (KPI) in Instrumentation and Measurement (aka Industry Automation)
  - Candidate of Science (Tech) Dissertation on System Oriented Precision Generators (1989)
- Teaching at KPI 1989-1998 Computer Networking, Internet Technologies, Security
- Professional work in Internet technologies since 1993
- Work at TERENA (Trans-European R&E Networking Association) 1998-2002
- Work at UvA with SNE group since 2003
  - Main research areas: Cloud Computing, Big Data Infrastructures, Application and Infrastructure Security, Generic AAA&Authorisation, Grid and collaborative systems
  - EU Projects: GEYSERS, GEANT3, Phosphorus, EGEE I-II, Collaboratory.nl
  - Standardisation activity IETF, Open Grid Forum (OGF) ISOD-RG chairing, NIST Cloud Collaboration, NIST Big Data WG, ISO/IEC Big Data Study Group
  - Now/2014: Big Data Architecture, Big Data Security, Cloud Computing and Big Data Curriculum development
  - Now/2015: EDSION Project coordinator: Building Data Science Profession

### Visionaries and Drivers: Seminal works, High level reports, Activities



The FOURTH PARADIGM DATA-INTENSIVE SCIENTIFIC DISCOVERY

DITED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

The Fourth Paradigm: Data-Intensive Scientific Discovery. By Jim Gray, Microsoft, 2009. Edited by Tony Hey, et al. http://research.microsoft.com/en-us/collaboration/fourthparadigm/

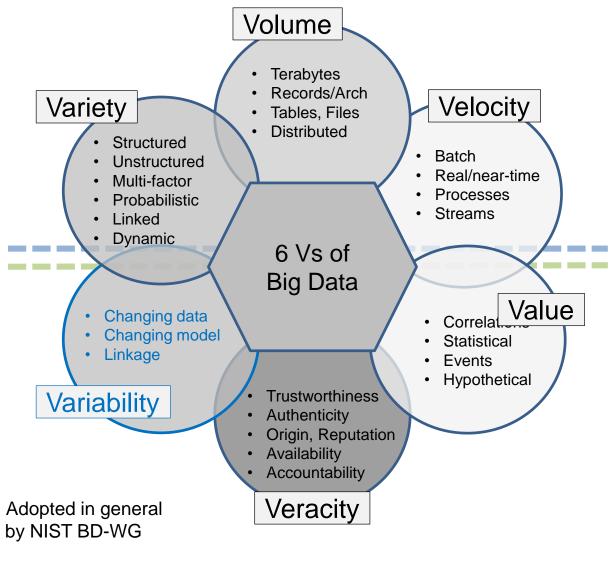


Riding the wave: How Europe can gain from the rising tide of scientific data. Final report of the High Level Expert Group on Scientific Data. October 2010. <u>http://cordis.europa.eu/fp7/ict/e-</u> <u>infrastructure/docs/hlg-sdi-report.pdf</u>



Research Data Sharing without barriers https://www.rd-alliance.org/

NIST Big Data Working Group (NBD-WG) http://bigdatawg.nist.gov/


ISO/IEC JTC1 Big Data Study Group (SGBD) http://jtc1bigdatasg.nist.gov/home.php



The Data Harvest: How sharing research data can yield knowledge, jobs and growth. An RDA Europe Report. December 2014 https://rd-alliance.org/dataharvest-report-sharing-dataknowledge-jobs-and-growth.html

KU KDM'16

## Big Data definition revisited: 6 V's of Big Data



Generic Big Data Properties

- Volume
- Variety
- Velocity

Acquired Properties (after entering system)

- Value
- Veracity
- Variability



KU KDM'16

# Big Data definition revisited: 5 parts vs 6V

### (1) Big Data Properties: 6V

- Volume, Variety, Velocity, Value, Veracity
- Additionally: Data Dynamicity (Variability)
- (2) New Data Models
  - Data linking, provenance and referral integrity
  - Data Lifecycle and Variability/Evolution
- (3) New Analytics
  - Real-time/streaming analytics, interactive and machine learning analytics
- (4) New Infrastructure and Tools
  - High performance Computing, Storage, Network
  - Heterogeneous multi-provider services integration
  - New Data Centric (multi-stakeholder) service models
  - New Data Centric security models for trusted infrastructure and data processing and storage

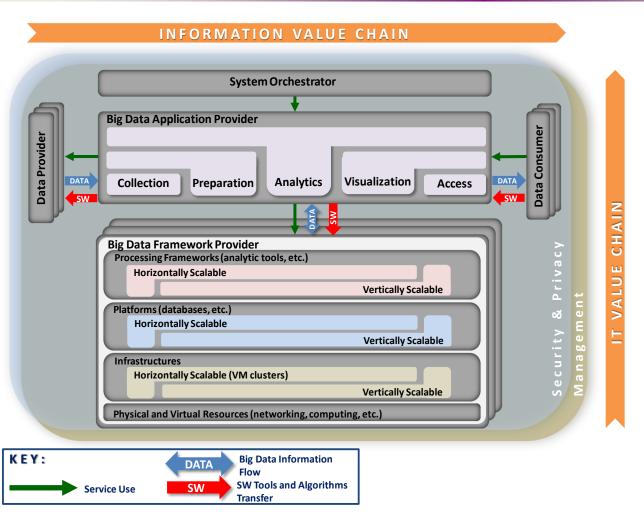
### (5) Source and Target

- High velocity/speed data capture from variety of sensors and data sources
- Data delivery to different visualisation and actionable systems and consumers
- Full digitised input and output, (ubiquitous) sensor networks, full digital control

# NIST Big Data Working Group (NBD-WG) and ISO/IEC JTC1 Study Group on Big Data (SGBD)

- NIST Big Data Working Group (NBD-WG) is leading the development of the Big Data Technology Roadmap - <u>http://bigdatawg.nist.gov/home.php</u>
  - Built on experience of developing the Cloud Computing standards fully accepted by industry
- Set of documents published in September 2015 as NIST Special Publication NIST SP 1500: NIST Big Data Interoperability Framework (NBDIF) <u>http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-1.pdf</u>

Volume 1: NIST Big Data Definitions


Volume 2: NIST Big Data Taxonomies

Volume 3: NIST Big Data Use Case & Requirements Volume 4: NIST Big Data Security and Privacy Requirements Volume 5: NIST Big Data Architectures White Paper Survey Volume 6: NIST Big Data Reference Architecture Volume 7: NIST Big Data Technology Roadmap

- NBD-WG defined 3 main components of the new technology:
  - Big Data Paradigm
  - Big Data Science and Data Scientist as a new profession
  - Big Data Architecture

The **Big Data Paradigm** consists of the distribution of data systems across horizontally-coupled independent resources to achieve the scalability needed for the efficient processing of extensive datasets.

# NIST Big Data Reference Architecture



### Main components of the Big Data ecosystem

- Data Provider
- Big Data Applications Provider
- Big Data Framework Provider
- Data Consumer
- Service Orchestrator

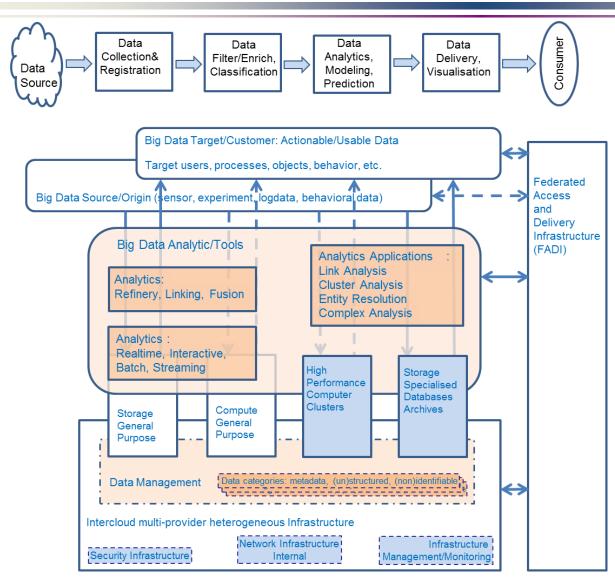
#### Big Data Lifecycle and Applications Provider activities

- Collection
- Preparation
- Analysis and Analytics
- Visualization
- Access

Big Data Ecosystem includes all components that are involved into Big Data production, processing, delivery, and consuming

[ref] Volume 6: NIST Big Data Reference Architecture. http://bigdatawg.nist.gov/V1\_output\_docs.php

# Big Data Architecture Framework (BDAF) by UvA


### (1) Data Models, Structures, Types

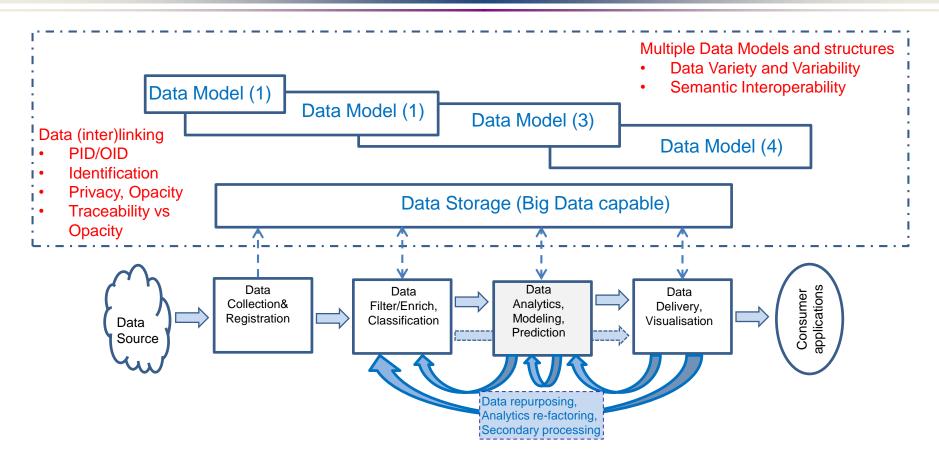
- Data formats, non/relational, file systems, etc.

### (2) Big Data Management

- Big Data Lifecycle (Management) Model
  - Big Data transformation/staging
- Provenance, Curation, Archiving
- (3) Big Data Analytics and Tools
  - Big Data Applications
    - Target use, presentation, visualisation
- (4) Big Data Infrastructure (BDI)
  - Storage, Compute, (High Performance Computing,) Network
  - Sensor network, target/actionable devices
  - Big Data Operational support
- (5) Big Data Security
  - Data security in-rest, in-move, trusted processing environments

# Big Data Infrastructure and Analytics Tools




#### **Big Data Infrastructure**

- Heterogeneous multi-provider inter-cloud infrastructure
- Data management infrastructure
- Collaborative Environment
- Advanced high performance (programmable) network
- Security infrastructure
- Federated Access and Delivery Infrastructure (FADI)

Big Data Analytics Infrastructure/Tools

- High Performance Computer Clusters (HPCC)
- Big Data storage and databases SQL and NoSQL
- Analytics/processing: Real-time, Interactive, Batch, Streaming
- Big Data Analytics tools and applications

# Data Lifecycle/Transformation Model



- Data Model changes along data lifecycle or evolution
- Data provenance is a discipline to track all data transformations along lifecycle
- Identifying and linking data
  - Persistent data/object identifiers (PID/OID)
  - Traceability vs Opacity
  - Referral integrity

### Big Data is Driving Cloud Usage – Cloud powers Big Data applications

Supply

There were 5 exabytes of information created between the dawn of civilization through 2003, but that much information is now created every 2 days, and the pace is increasing

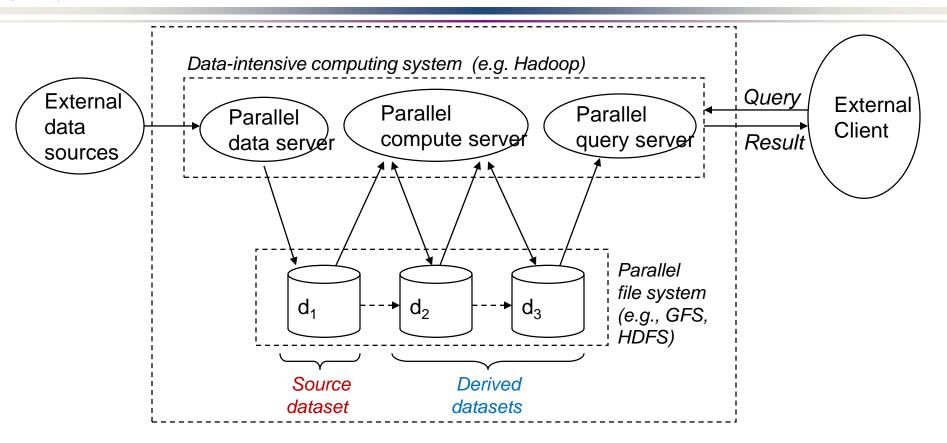
Eric Schmidt, Google CEO, Techonomy Conference, August 4, 2010





Real-time

Data is becoming the new raw material of business: an economic input almost on a par with capital and labour. "Every day I wake up and ask, 'how can I flow data better, manage data better, analyse data better?" says Rollin Ford, the CIO of Wal-Mart. Source: Data, Data Everywhere, The Economist, February 25, 2010


Demand

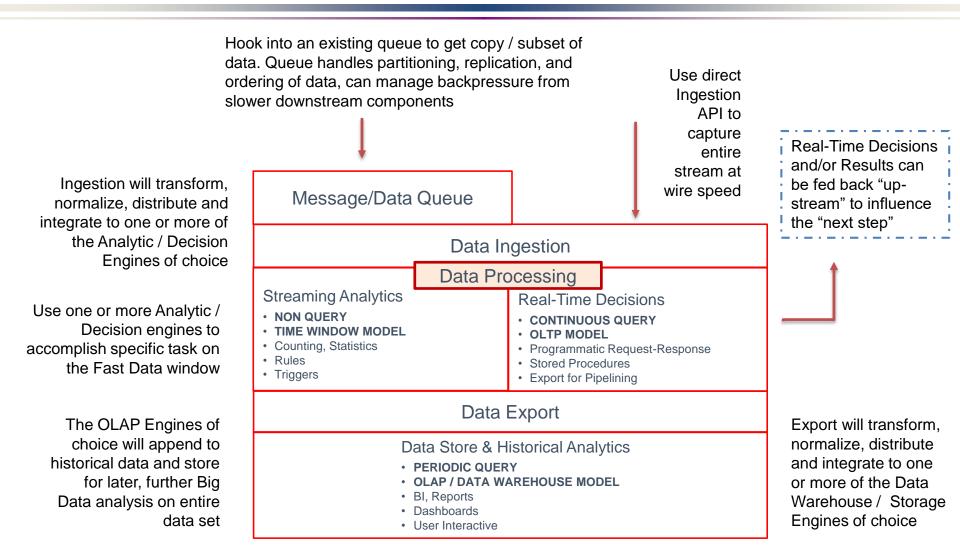
# Public Clouds are All Over the Place



*Cloud Centers are All Over the Place, from datacentermap.com November 2015* <u>http://www.datacentermap.com/cloud.html</u>

# **Cloud Based Big Data Services**




#### **Characteristics:**

Massive data and computation on cloud, small queries and results

**Examples:** 

Search, scene completion service, log processing







# Important Big Data Technologies

#### Microsoft Azure:

Event Hubs Data Factory Stream Analytics HDInsight DocumentDB

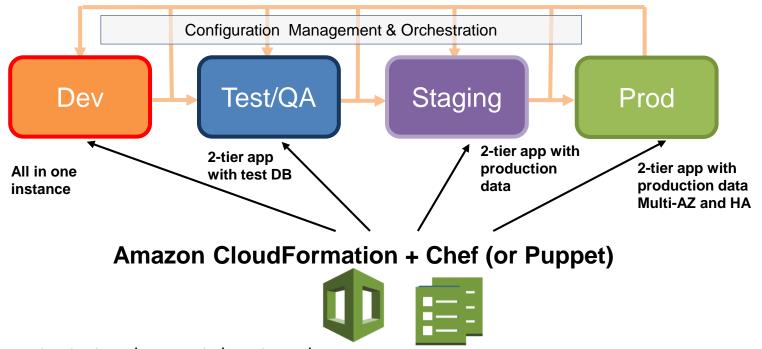
#### Google GCE: DataFlow BigQuery

Amazon AWS: Kinesis EMR DynamoDB

#### Proprietary: Vertica HortonWorks

|                                                                                                                  |                                                                                                  | -                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|
|                                                                                                                  | Event Hubs                                                                                       |                                      |  |  |  |
| Me                                                                                                               | essage/Data Queue                                                                                |                                      |  |  |  |
| Samza                                                                                                            | Data Factory,                                                                                    | Kafka, Flume, Scribe                 |  |  |  |
| Dataflo                                                                                                          | w Data li                                                                                        | ngestion                             |  |  |  |
|                                                                                                                  | Stream Analytics,<br>Storm, Cascading,<br>S4, Crunch, Spark-<br>Streaming<br>Streaming Analytics | <b>VoltDB</b><br>Real-Time Decisions |  |  |  |
| Sqoop, HDFS Data Export                                                                                          |                                                                                                  |                                      |  |  |  |
| HDInsight, DocumentDB, Hadoop, Hive, Spark<br>SQL, Druid, BigQuery, DynamoDB, Vertica,<br>MongoDB, EMR, CouchDB, |                                                                                                  |                                      |  |  |  |
| Data Store & Historical Analytics                                                                                |                                                                                                  |                                      |  |  |  |

#### **Open Source**


Samza Kafka Flume Scribe Storm Cascading S4 Crunch Spark Hadoop Hive Druid MongoDB CouchDB VoltDB



# **Cloud Platform Benefits for Big Data**

- Segregated networks isolate traffic
  - Clouds construction provides separate networks for each type of traffic
  - Big Data applications benefit from lowest latencies possible for node to node synchronization, dynamic cluster resizing, and other scale-out operations
- Cloud deployment on virtual machines, containers, and bare metal
  - For a traditional highly load-variable problem one might consider using VM's as a deployment vehicle for that.
  - Some clouds will offer container based isolation instead of VMs.
- Cloud tools for large scale applications deployment and automation
  - Supported by major IDE
  - Basis for agile technologies and Zero-touch services provisioning

### Cloud-powered Services Development Lifecycle: DevOps == Continuous service improvement



- Easily creates test environment close to real
- Powered by cloud deployment automation tools
  - To enable configuration Management and Orchestration, Deployment automation
- Continuous development test integration
  - CloudFormation Template, Configuration Template, Bootstrap Template
- Can be used with Puppet and Chef, two configuration and deployment management systems for clouds

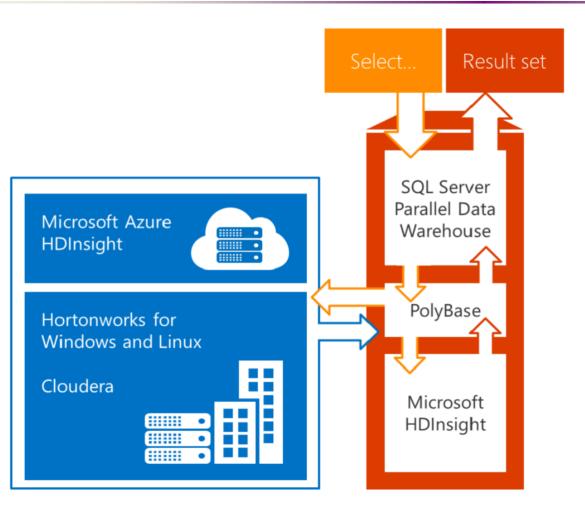
[ref] Building Powerful Web Applications in the AWS Cloud" by Louis Columbus http://softwarestrategiesblog.com/2011/03/10/building-powerful-web-applications-in-the-aws-cloud/



# **Cloud HPC and Big Data Platforms**

- HPC on cloud platform
  - Special HPC and GPU VM instances as well as Hadoop/HPC clusters offered by all CSPs
- Amazon Big Data services
  - Amazon Elastic MapReduce, Kinesis, DynamoDB, Regshift, etc
- Microsoft Analytics Platform System (APS)
  - Microsoft HD Insight/Hadoop ecosystems
- IBM BlueMix applications development platform
  - Includes full cloud services and data analytics services
- LexisNexis HPC Cluster System
  - Combing both HPC cluster platform and optimized data processing languages
- Variety of Open Source tools
  - Streaming analytics/processing tools: Apache Kafka, Apache Storm, Apache Spark

# AWS Cloud Big Data Services


AWS Cloud offers the following services and resources for Big Data processing

- EC2 Virtual Machine (VM) instances for HPC optimized for computing (with multiple cores) and with extended storage for large data processing.
- Amazon Elastic MapReduce (EMR) provides the Hadoop framework on Amazon EC2 and offers a wide range of Hadoop related tools.
- **Amazon Kinesis** is a managed service for real-time processing of streaming big data (throughput scaling from megabytes to gigabytes of data per second and from hundreds of thousands different sources).
- **Amazon DynamoDB** highly scalable NoSQL data stores with sub-millisecond response latency.
- Amazon Redshift fully-managed petabyte-scale Data Warehouse in cloud at cost less than \$1000 per terabyte per year. It is provided with columnar data storage with possibility to parallelise queries.
- Amazon RDS scalable relational database.
- **Amazon Glacier** archival storage to AWS for long time data storage at lower cost that standard Amazon S3 object storage.



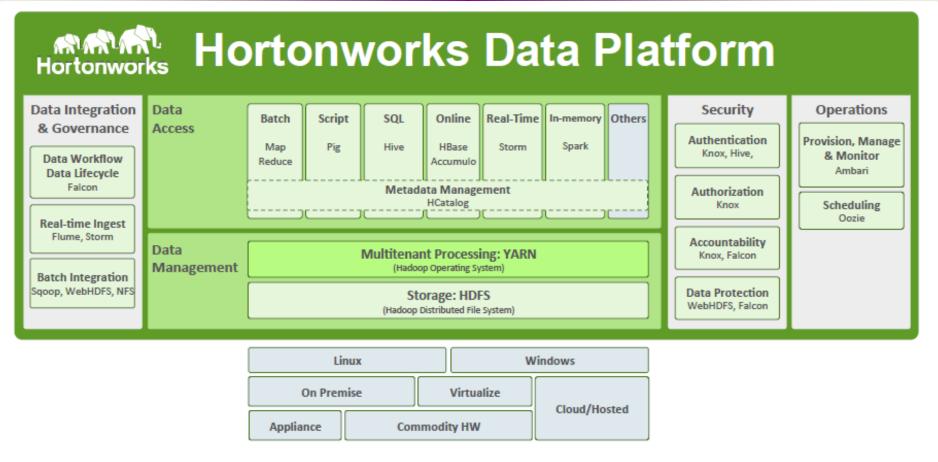
- Microsoft Azure cloud provides general IaaS services and reach Platform as a Service (PaaS) services.
  - Similar to AWS, Microsoft Azure offers special VM instances that have both computational and memory advanced capabilities.
- The Analytics Platform System (APS) combines the Microsoft SQL Server based Parallel Data Warehouse (PDW) platform with HDInsight and Apache Hadoop based scalable data analytics platform.
  - APS includes the PolyBase data querying technology to simplify integration of the PDW SQL data and data from Hadoop.
- HDInsight Hadoop based platform has been co-developed with Hortonworks
  - HDInsight provides comprehensive integration and management functionality for multi-workload data processing on Hadoop platform including batch, stream, in-memory processing methods.

# HDInsight: Microsoft's Big Data Solution



 HDInsight can run both on Azure Cloud and on Windows Server (on premises)

- Data exchange via PolyBase


- Compatible with and support all products from Apache Hadoop stack
- Supports all stages of Big Data processing
- PolyBase is a new technology that allows integrating Microsoft SQL Server based Parallel Data Warehouse (PDW) with Hadoop
- Azure Blob Storage used to persistently store data
  - Data are streamed to Hadoop/HDFS for processing and pushed back to Azure Blob Storage

# HDInsight/Hadoop Ecosystem



[ref] Microsoft Azure Training Kit. <u>https://github.com/Azure-Readiness/MicrosoftAzureTrainingKit</u> KU KDM'16 Cloud, Big Data and Data Science





- HDP includes the most recent developments of the Open Source Hadoop suite
- Can run on Linux and on Windows OS
- Can be deployed on premises on dedicated cluster and on cloud as a hosted application

[ref] <u>http://hortonworks.com/hdp</u>/

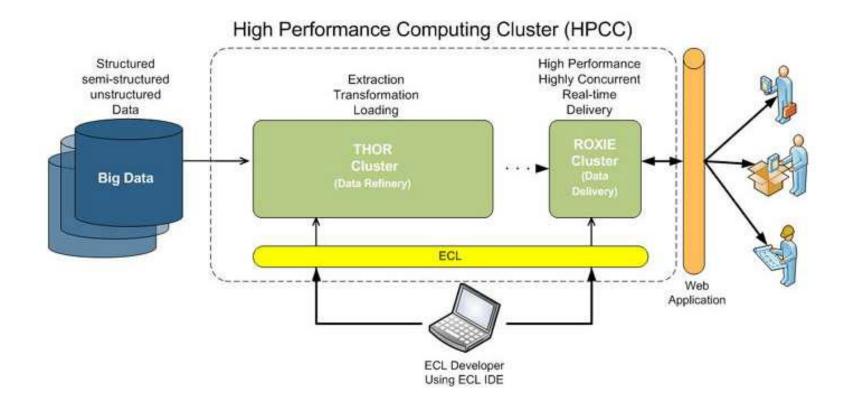


### Hortonworks Data Platform (HDP) http://hortonworks.com/

- HDP delivers a single integrated Hadoop platform for enterprises
  - Provides a data platform for multi-workload data processing across an array of processing methods including batch and interactive to real-time
  - Supports key capabilities of an enterprise data platform: Governance, Security and Operations
  - YARN and Hadoop Distributed Filesystem (HDFS) are the core components of HDP
- YARN is treated as datacenter OS and supports multiple access methods (batch, real-time, streaming, in-memory, and more) on a common data set
  - YARN is the architectural center of Hadoop that allows to process data simultaneously in multiple ways
  - Allows creating multi-tenant data analytics applications
- HDP runs natively on Linux and Windows OS
  - HDP provides the basis for Microsoft's HDInsight Service meaning complete portability of data is retained on-premise and in the cloud
  - Available in integrated hardware from Teradata
- Hortonworks provides a simple starters solution Hadoop Sandbox
  - Hortonworks Sandbox is a single-node implementation of Hadoop based on the Hortonworks Data Platform that includes all the typical components found in a Hadoop deployment

# ×

### LexisNexis HPCC Systems as an integrated Open Source platform for Big Data Analytics


HPCC Systems data analytics environment components and HPCC Systems architecture model is based on a distributed, shared-nothing architecture and contains two cluster

- **THOR Data Refinery**: Massively parallel Extract, Transform, and Load (ECL) engine that can be used for variety of tasks such as massive: joins, merges, sorts, transformations, clustering, and scaling.
- **ROXIE Data Delivery**: Massively parallel, high throughput, structured query response engine with real time analytics capability

Other components of the HPCC environment: data analytics languages

- Enterprise Control Language (ECL): An open source, data-centric declarative programming language
  - The declarative character of ECL language simplifies coding
  - ECL is explicitly parallel and relies on the platform parallelism.
- LexisNexis proprietary record linkage technology **SALT (Scalable Automated Linking Technology)**: automates data preparation process: profiling, parsing, cleansing, normalisation, standardisation of data.
  - Enables the power of the HPCC Systems and ECL
- Knowledge Engineering Language (KEL) is an ongoing development
  - KEL is a domain specific data processing language that allows using semantic relations between entities to automate generation of ECL code.

# LexisNexis HPCC Systems Architecture




- THOR is used for massive data processing in batch mode for ETL processing
- ROXIE is used for massive query processing and real-time analytics

# Data Science Profession Definition

New technologies require new competences, skills and new professions

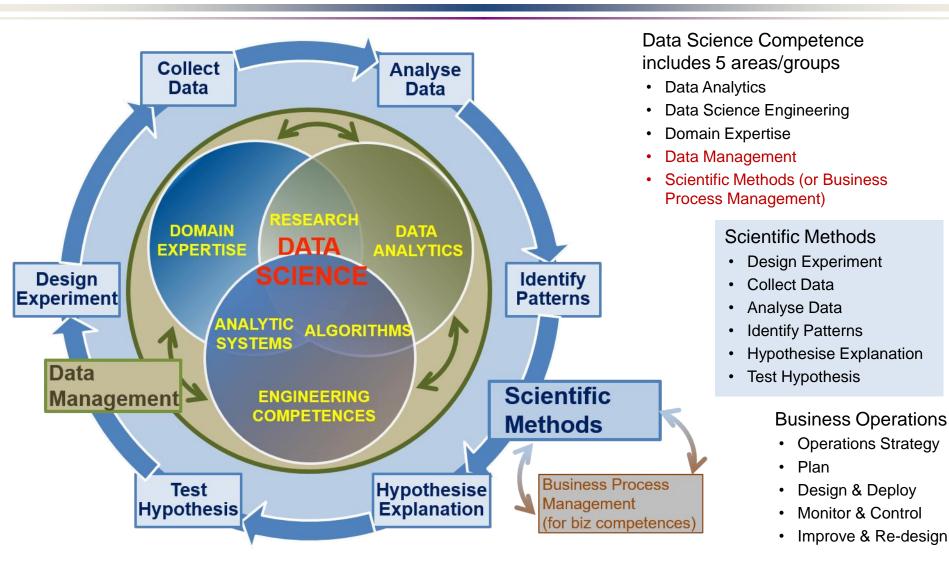
- EDISON Data Science Framework
- Data Science professions family
- EU activities to address e-skills shortage
- EDISON engagement and outreach activities

### **EDISON Framework and Background Developments**

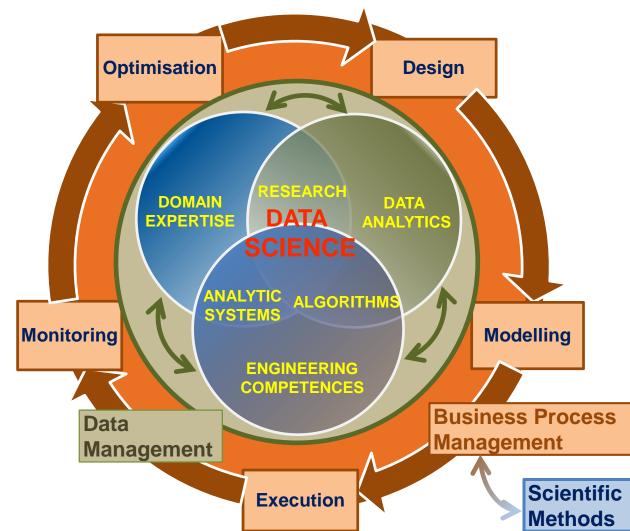


- EDISON Framework components
  - CF-DS Data Science Competence Framework
  - DS-BoK Data Science Body of Knowledge
  - MC-DS Data Science Model Curriculum
  - Data Science Taxonomy and Scientific Disciplines Classification
  - EOEE EDISON Online Education Environment
- Background: EU Competence Frameworks and Profiles
  - e-CFv3.0 European e-Competence framework for IT
  - CWA 16458 (2012): European ICT Professional Profiles Family Tree
  - ESCO (European Skills, Competences, Qualifications and Occupations) framework




# Identified Data Science Competence Groups

- Traditional/known Data Science competences/skills groups include
  - Data Analytics or Business Analytics or Machine Learning
  - Engineering or Programming
  - Subject/Scientific Domain Knowledge
- EDISON identified 2 additional competence groups demanded by organisations
  - Data Management, Curation, Preservation
  - Scientific or Research Methods and/vs Business Processes/Operations
- Other skills commonly recognized aka "soft skills" or "social intelligence"
  - Inter-personal skills or team work, cooperativeness
- All groups need to be represented in Data Science curriculum and training
  - Challenging task for Data Science education and training
- Another aspect of integrating Data Scientist into organisation structure
  - General Data Science (or Big Data) literacy for all involved roles and management
  - Common agreed and understandable way of communication and information/data presentation
  - Role of Data Scientist: Provide such literacy advice and guiding to organisation


DOMAIN EXPERTISE DATA DATA ANALYTICS CIENCE ANALYTIC ALGORITHMS SYSTEMS ENGINEERING COMPETENCES

[ref] Legacy: NIST BDWG definition of Data Science

### Data Science Competence Groups - Research



### Data Science Competences Groups – Business



Data Science Competence includes 5 areas/groups

- Data Analytics
- Data Science Engineering
- Domain Expertise
- Data Management
- Scientific Methods (or Business Process Management)

#### Scientific Methods

- Design Experiment
- Collect Data
- Analyse Data
- Identify Patterns
- Hypothesise Explanation
- Test Hypothesis

Business Process Operations/Stages

- Design
- Model/Plan
- Deploy & Execute
- Monitor & Control
- Optimise & Re-design

# Identified Data Science Competence Groups

|   |   | Data Analytics (DA) | Data Management/<br>Curation (DM)                                   | DS Engineering (DSE)                                                                                                                                                    | Scientific/Research Methods (DSRM)                                                                                                                                                                               | DS Domain Knowledge<br>(including Business Apps)                                                                                      |
|---|---|---------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| ] | L |                     | implement data<br>strategy                                          | Use engineering principles to<br>research, design, or develop<br>structures, instruments,<br>machines, experiments,<br>processes, systems, theories,<br>or technologies | Create new understandings and<br>capabilities by using the scientific<br>method's hypothesis, test, and evaluation<br>techniques; critical review; or similar<br>engineering research and development<br>methods | Understand business and<br>provide insight, translate<br>unstructured business<br>problems into an abstract<br>mathematical framework |
| 2 | 2 |                     | Develop data models                                                 | Develops specialized data<br>analysis tools to support<br>executive decision making                                                                                     | Direct systematic study toward a fuller<br>knowledge or understanding of the<br>fundamental aspects of phenomena and<br>of observable facts, and discovers new<br>approaches to achieve goals                    | Use data to improve existing<br>services or develop new<br>services                                                                   |
|   | ) | -                   |                                                                     | Design, build, operate<br>relational non-relational<br>databases                                                                                                        | Undertake creative work, making<br>systematic use of investigation or<br>experimentation, to discover or revise<br>knowledge of reality, and uses this<br>knowledge to devise new applications                   | Participate strategically and<br>tactically in financial<br>decisions that impact<br>management and<br>organizations                  |
| 2 |   |                     | Develop and maintain<br>a historical data<br>repository of analysis | Develop and apply<br>computational solutions to<br>domain related problems<br>using wide range of data<br>analytics platforms                                           | Apply ingenuity to complex problems, develop innovative ideas                                                                                                                                                    | Recommends business<br>related strategic<br>objectives and<br>alternatives and<br>implements them                                     |
| 4 | 5 |                     |                                                                     | Develop solutions for secure and reliable data access                                                                                                                   | Ability to translate strategies into action plans and follow through to completion.                                                                                                                              | Provides scientific, technical,<br>and analytic support services<br>to other organisational roles                                     |
| 6 | 5 |                     | Vicualico comploy and                                               | Develop algorithms to analyse multiple source of data                                                                                                                   | Influence the development of organizational objectives                                                                                                                                                           | Analyse multiple data sources for marketing purposes                                                                                  |
| 7 |   | KDM'16              |                                                                     | Prototype new data analytics<br>applications<br>Cloud, Big Data and D                                                                                                   | ata Science                                                                                                                                                                                                      | Analyse customer data to<br>identify/optimise customer<br>relations actions                                                           |



### Identified Data Science Skills/Experience Groups

#### • Group 1: Skills/experience related to competences

- Data Analytics and Machine Learning
- Data Management/Curation (including both general data management and scientific data management)
- Data Science Engineering (hardware and software) skills
- Scientific/Research Methods
- Application/subject domain related (research or business)
- Mathematics and Statistics
- Group 2: Big Data (Data Science) tools and platforms
  - Big Data Analytics platforms
  - Math & Stats apps & tools
  - Databases (SQL and NoSQL)
  - Data Management and Curation platform
  - Data and applications visualisation
  - Cloud based platforms and tools
- Group 3: Programming and programming languages and IDE
  - General and specialized platforms for data analysis and statistics
- Group 4: Soft skills or Social Intelligence
  - Personal, inter-personal communication, team work (also called social intelligence or soft skills)

## Identified Data Science Skill Groups

|    | Data Analytics and<br>Machine Learning                                  | Data Management/<br>Curation                                                                                 | Data Science<br>Engineering (hardware<br>and software)                                 | Scientific/ Research<br>Methods                                                                  | Personal/Inter-<br>personal<br>communication, team<br>work | Application/subject<br>domain (research or<br>business)                      |  |
|----|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|--|
| 1  | Artificial intelligence,<br>machine learning                            | Manipulating and<br>analyzing complex, high-<br>volume, high-<br>dimensionality data from<br>varying sources | Design efficient<br>algorithms for accessing<br>and analyzing large<br>amounts of data | Interest in data science                                                                         | Communication skills                                       | Recommender or<br>Ranking system                                             |  |
| 2  | Machine Learning and<br>Statistical Modelling                           | I Modelling advanced data mining critical, curious and focused                                               |                                                                                        | Inter-personal intra-<br>team and external<br>communication                                      | Data Analytics for<br>commercial purposes                  |                                                                              |  |
| 3  | Machine learning<br>solutions and pattern<br>recognition<br>techniques  | Data models and datatypes                                                                                    | Multi-core/distributed<br>software, preferably in a<br>Linux environment               | Confident with large data<br>sets and ability to identify<br>appropriate tools and<br>algorithms | Network of contacts in<br>Big Data community               | Data sources and<br>techniques for business<br>insight and customer<br>focus |  |
| 4  | Supervised and<br>unsupervised learning                                 | Handling vast amounts of data                                                                                | Databases, database<br>systems, SQL and NoSQL                                          | Flexible analytic approach to<br>achieve results at varying<br>levels of precision               |                                                            | Mechanism Design<br>and/or Latent Dirichlet<br>Allocation                    |  |
| 5  | Data mining                                                             | Experience of working with large data sets                                                                   | Statistical analysis<br>languages and tooling                                          | Exceptional analytical skills                                                                    |                                                            | Game Theory                                                                  |  |
| 6  | Markov Models,<br>Conditional Random<br>Fields                          | (non)relational and (un)-<br>structured data                                                                 | Cloud powered<br>applications design                                                   |                                                                                                  |                                                            | Copyright and IPR                                                            |  |
| 7  | Logistic Regression,<br>Support Vector<br>Machines                      | Cloud based data<br>storage and data<br>management                                                           |                                                                                        |                                                                                                  |                                                            |                                                                              |  |
| 8  | Predictive analysis<br>and statistics<br>(including Kaggle<br>platform) | Data management<br>planning                                                                                  |                                                                                        |                                                                                                  |                                                            |                                                                              |  |
| 9  | (Artificial) Neural<br>Networks                                         | Metadata annotation<br>and management                                                                        |                                                                                        |                                                                                                  |                                                            |                                                                              |  |
| 10 | Statistics                                                              | Data citation, metadata,<br>PID (*)                                                                          |                                                                                        |                                                                                                  |                                                            |                                                                              |  |
| K  | KU KDM'16 Cloud, Big Data and Data Science 35                           |                                                                                                              |                                                                                        |                                                                                                  |                                                            |                                                                              |  |

# Identified Big Data Tools and Programming Languages

|   | Big Data Analytics platforms                                                                           | Math& Stats tools                                                               | Databases                                                                                 |          | Data/ applications visualization                                          | Data Management and<br>Curation platform                                                            |
|---|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1 | Big Data Analytics platforms                                                                           | Advanced analytics tools<br>(R, SPSS, Matlab, etc)                              | SQL and relational databa                                                                 | ises     | Data visualization Libraries (D3.js,<br>FusionCharts, Chart.js, other)    | Data modelling and related<br>technologies (ETL, OLAP, OLTP,<br>etc)                                |
| 2 | Big Data tools (Hadoop,<br>Spark, etc)                                                                 | Data Mining tools:<br>RapidMiner, others                                        | NoSQL Databases                                                                           |          | Visualisation software (D3,<br>Processing, Tableau, <u>Gephi</u> , etc)   | Data warehouses platform and related tools                                                          |
| 3 | Distributed computing tools a<br>plus (Spark, MapReduce,<br>Hadoop, Hive, etc.)                        | Mathlab                                                                         | NoSQL, Mongo, Redis                                                                       |          | Online visualization tools<br>(Datawrapper, Google Charts,<br>Flare, etc) | Data curation platform,<br>metadata management (ETL,<br>Curator's Workbench, DataUp,<br>MIXED, etc) |
| 4 | Real time and streaming<br>analytics systems (like Flume,<br>Kafka, Storm)                             | Python                                                                          | NoSQL, Teradata                                                                           |          |                                                                           | Backup and storage<br>management (iRODS, XArch,<br>Nesstar, others                                  |
| 5 | Hadoop Ecosystem/platform                                                                              | R, Tableau R                                                                    | Excel                                                                                     |          |                                                                           |                                                                                                     |
| 6 | Spotfire                                                                                               | SAS                                                                             | ٦                                                                                         |          | Big Data Analytics platforms<br>Math& Stats tools<br>Databases            |                                                                                                     |
| 7 | Azure Data Analytics<br>platforms (HDInsight, APS and<br>PDW, etc)                                     | Scripting language, e.g.<br>Octave                                              |                                                                                           | •        |                                                                           |                                                                                                     |
| 8 | Amazon Data Analytics<br>platform (Kinesis, EMR, etc)                                                  | Statistical tools and data mining techniques                                    | <ul> <li>Data/applications visualization</li> <li>Data Management and Curation</li> </ul> |          |                                                                           |                                                                                                     |
| 9 | Other cloud based Data<br>Analytics platforms<br>(HortonWorks, Vertica<br>LexisNexis HPCC System, etc) | Other Statistical<br>computing and languages<br>(WEKA, KNIME, IBM SPSS,<br>etc) |                                                                                           | platform |                                                                           |                                                                                                     |



### Suggested e-CF extensions for Data Science

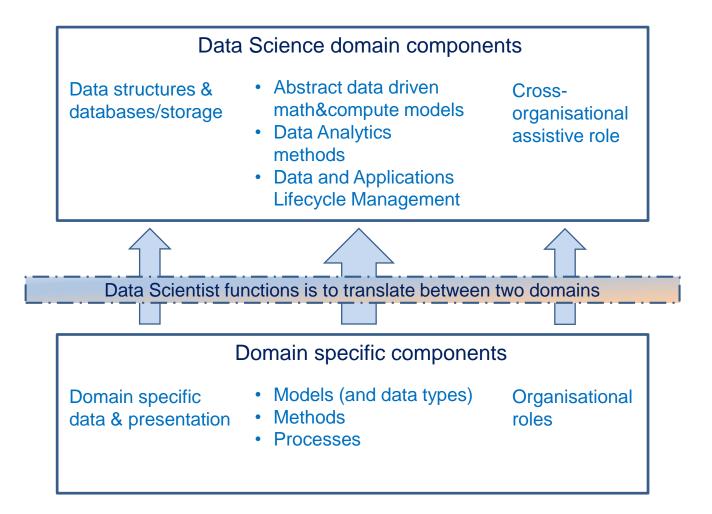
- A. PLAN and Design
- A.10\* Organisational workflow/processes model definition/formalisation
- A.11\* Data models and data structures
- B. BUILD: Develop and Deploy/Implement
- B.7\* Apply data analytics methods (to organizational processes/data)
- B.8\* Data analytics application development
- B.9\* Data management applications and tools
- B.10\* Data Science infrastructure deployment
- C. RUN: Operate
- C.5\* User/Usage data/statistics analysis
- C.6\* Service delivery/quality data monitoring

15 Data Science Competences proposed covering different organizational roles and workflow stages

• Data Scientist roles are crossing multiple org roles and workflow stages

- D. ENABLE: Use/Utilise
- D10. Information and Knowledge Management (powered by DS)
- D.13\* Data presentation/visualisation, actionable data extraction
- D.14\* Support business processes/roles with data and insight (support to D.5, D.6, D.7, D.12)
- D.15\* Data management/preservation/curation with data and insight

#### E. MANAGE


- E.10\* Support Management and Business Improvement with data and insight (support to E.5, E.6)
- E.11\* Data analytics for (business) Risk Analysis/Management (support to E.3)
- E.12\* ICT and Information security monitoring and analysis (support to E.8)



# Possible Data Scientist profiles/roles as extension to CWA16458 (2012) or ESCO

- Data Analyst, Business Analyst
  - Data Mining
  - Machine Learning
- Digital Librarian, Data Archivist, Data Curator, Data Steward
  - Data Management related competences
- Data Science Engineer/Administrator/Programmer
  - Data Analytics applications development
  - Scientific programmer
  - Data Science/Big Data Infrastructure engineer/developer/operator
- Data Science Researcher
  - Data Science creative
  - Data Science consultant/Analyst
- Data Scientist in subject/research domain
- Research e-Infrastructure brings its own specifics to required competences and skills definition

### Data Science and Subject Domains



### Data Scientist and Subject Domain Specialist

### Subject domain components

- Model (and data types)
- Methods
- Processes
- Domain specific data and presentation/visualization methods
- Organisational roles and relations

### Data Scientist is an assistant to Subject Domain Specialists

- Translate subject domain Model, Methods, Processes into abstract data driven form
- Implement computational models in software, build required infrastructure and tools
- Do (computational) analytic work and present it in a form understandable to subject domain
- Discover new relations originated from data analysis and advice subject domain specialist
- Interact and cooperate with different organizational roles to obtain data and deliver results and/or actionable data

# Data Science Body of Knowledge (DS-BoK)

### DS-BoK Knowledge Area Groups (KAG)

- KAG1-DSA: Data Analytics group including Machine Learning, statistical methods, and Business Analytics
- KAG2-DSE: Data Science Engineering group including Software and infrastructure engineering
- KAG3-DSDM: Data Management group including data curation, preservation and data infrastructure
- KAG4-DSRM: Scientific/Research Methods group
- KAG5-DSBP: Business process management group
- Data Science domain knowledge to be defined by related expert groups

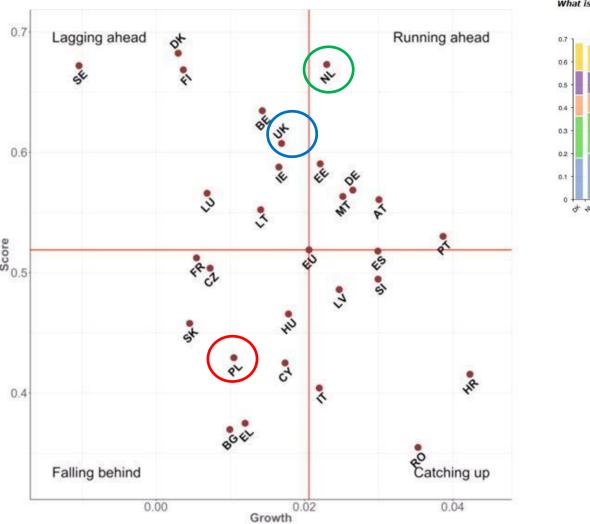


KAG3-DSDM: Data Management group: data curation, preservation and data infrastructure

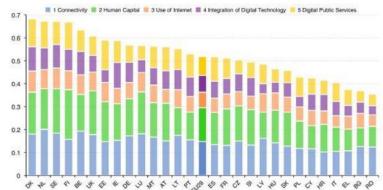
DM-BoK version2 "Guide for performing data management"

- 11 Knowledge Areas
  - (1) Data Governance,
  - (2) Data Architecture,
  - (3) Data Modelling and Design,
  - (4) Data Storage and Operations,
  - (5) Data Security,
  - (6) Data Integration and Interoperability,
  - (7) Documents and Content,
  - (8) Reference and Master Data,
  - (9) Data Warehousing and Business Intelligence,
  - (10) Metadata,
  - (11) Data Quality

Other Knowledge Areas motivated by RDA, European Open Data initiatives, European Open Data Cloud


- (12) PID, ORCID
- (13) Data Management Plan
- (14) Research Data Infrastructure

# \*


### European Agenda on Skills for Digital Single Market (DSM) in Horizon 2020

- EC document to be published in May 2016 under Dutch presidency
- Multiple activities at EC
  - European Open Data Cloud (EODC) report by Barend Mons, Leiden University (bioinformatician)
    - To be published in April 2016
  - Standardisation for Big Data technologies Workshop 14 March 2016, Luxembourg
    - Call for more active contribution by European industry and experts in NIST Big Data WG and ISO/IEC JTC1 Big Data Study Group (SGBD)
  - eSkills workshop 16 March 2016, Den Haag
    - Addressing eSkills gap in Europe
  - Other events and activities by BDVA, OECD, etc

### Digital Economy and Society Index (EU 2015-2016)



What is the ranking in 2016?





#### [ref] http://europa.eu/rapid/press-release\_MEMO-16-385\_en.htm

Cloud, Big Data and Data Science



- What are the main challenges for the realisation of an integrated European e- infrastructure from the perspective of **scientific data-related needs** (from data access to sharing, analytics, re-use, preservation, standards, interoperability, value chain and other issues)?
- What are the challenges for reinforcing the **cooperation between European einfrastructure service providers and their scientific users**, including thematic research infrastructures, to accelerate user's adoption of e-infrastructure services - such as identity management innovation - and foster innovation in e-infrastructures?
- What are the **challenges faced by industrial actors** preventing them to fully benefit from the services provided by European e-infrastructures and to contribute to the innovation of the existing e-infrastructures?
- What are the main challenges Europe is facing regarding skills and competences required for effective data driven science, and management of research e-infrastructures?

# EDISON Project Engagement and Outreach

- EDISON Liaison Groups: Universities, Industry, Experts
- Champion universities
  - Summer 2016 workshop of Champions, Ambassadors and Adopters
- EDISON Survey on competences and skills for Data Science
   <a href="https://www.surveymonkey.com/r/EDISON\_project">https://www.surveymonkey.com/r/EDISON\_project</a> Defining\_Data\_science\_profession
- Numerous workshops
- Data Science community portal <a href="http://www.edison-project.eu/">http://www.edison-project.eu/</a>
  - Community forum and community contribution
  - All major project deliverable are open for community discussion
  - Future: Personal profile building and competences self-assessment
- Future Data Science professional certification
  - For graduates and self-made data scientists

### EDISON Survey: Data Science Competences and Skills

#### Survey link https://www.surveymonkey.com/r/EDISON\_project - Defining\_Data\_science\_profession



EDISON project: Defining Data science profession

Introduction

#### Purpose

The questionnaire is going to be used in the context of the EDISON project to identify I emerging Data Science profession. The term Data Science is an umbrelia term that en required during the data life cycle. Data science is a combination of science, engineert Engineering skills, Domain expertise, and Interpersonal skills (Social Intelligence).

This questionnaire will help Edison consortium to respond to the following questions: • What are the common competences of all Data Scientists in any field of work (mainly Infrastructures)?

· What are the specific competences that are required to a Data Scientist in each spec or market segment)?

· What are the career path(s) followed to become a Data Scientist?

· What are the specific competences requested by the employers for the Data Scientis valued/valuable?

· What are the trends in future Data Scientist positions?

Duration of survey and length of questionnaire:

20 min

Guarantee of confidentiality:

Data collected will be anonymized and used according to the European data privacy re

#### EDISON project:

The project is H2020 EU funded project to identify the skills and competences requirec information can be found the project web site: <a href="http://edison-project.eu">http://edison-project.eu</a>

Section 1: About the respondent institution Section 2: About the respondent Section 3: Role and activities of the data scientist Section 4: Training of the Data Scientist Section 6: Data Analytics Section 6: Data Analytics Section 7: Data Science Engineering Section 7: Beaserach Infrastructure Management and Operation Section 9: Scientific and Research methods Section 10: Domain related expertise Section 10: Domain netated expertise



EDISON project: Defining Data science profession

Data Analytics skills and competencies for data science profession

#### \* 19. What are the competences and skills a data scientist should have on data analytics:

|                                                                                                                                                                                                                 | Not relevant | Factual and<br>theoretical<br>knowledge | Comprehensive,<br>factual and<br>theoretical<br>knowledge | Advanced<br>knowledge of a<br>field, critical<br>understanding<br>of theories and<br>principles | Highly<br>specialized<br>knowledge,<br>Critical<br>awareness,<br>interface<br>between<br>different fields | Knowledge at<br>the most<br>advanced<br>frontier of a field |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Use appropriate<br>statistics to provide<br>insight on data                                                                                                                                                     | 0            | 0                                       | 0                                                         | 0                                                                                               | 0                                                                                                         | 0                                                           |
| Use appropriate<br>techniques for analysing<br>data (AP Testing,<br>Association rule<br>Learning,<br>Crowd sourcing, Data<br>fusion and integration,<br>Data Mining, Ensemble<br>learning, Machine<br>learning, | 0            | 0                                       | 0                                                         | 0                                                                                               | 0                                                                                                         | 0                                                           |
| Use Predictive analytics<br>to analyse big data and<br>discover new relation                                                                                                                                    | 0            | 0                                       | 0                                                         | 0                                                                                               | 0                                                                                                         | 0                                                           |
| Research and analyse<br>complex data sets,<br>combine different<br>sources of data to<br>improve analysis                                                                                                       | 0            | 0                                       | 0                                                         | 0                                                                                               | 0                                                                                                         | 0                                                           |
| Develop specialised<br>analytics to enable agile<br>decision making                                                                                                                                             | 0            | 0                                       | 0                                                         | 0                                                                                               | 0                                                                                                         | 0                                                           |

#### profession

competencies for data science profession

#### a scientist should have on data management and curation:

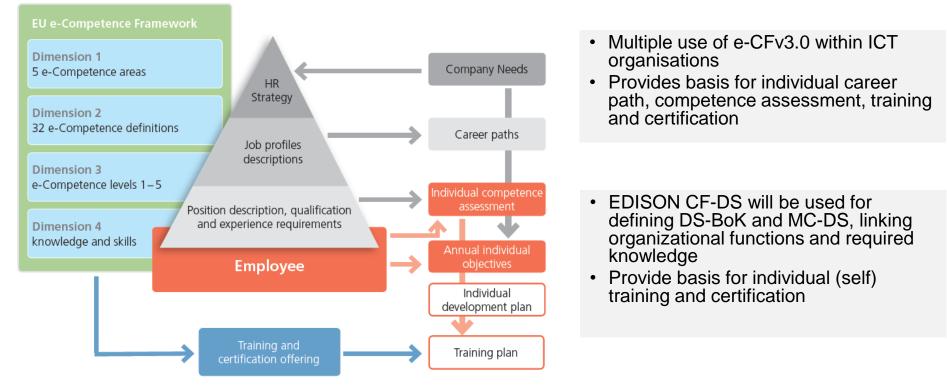
| d<br>II<br>e | Comprehensive,<br>factual and<br>theoretical<br>knowledge | Advanced<br>knowledge of a<br>field, critical<br>understanding<br>of theories and<br>principles | Highly<br>specialized<br>knowledge,<br>Critical<br>awareness,<br>interface<br>between<br>different fields | Knowledge at<br>the most<br>advanced<br>frontier of a field |
|--------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|              | $\bigcirc$                                                | $\bigcirc$                                                                                      | $\bigcirc$                                                                                                | 0                                                           |
|              | 0                                                         | 0                                                                                               | $\bigcirc$                                                                                                | 0                                                           |
|              | 0                                                         | 0                                                                                               | 0                                                                                                         | 0                                                           |
|              | 0                                                         | 0                                                                                               | 0                                                                                                         | 0                                                           |
|              | 0                                                         | $\bigcirc$                                                                                      | 0                                                                                                         | 0                                                           |
|              | 0                                                         | 0                                                                                               | 0                                                                                                         | 0                                                           |

#### on data management and curation:

8



### **Questions and Discussion**




### Additional information

- EDISON Approach: e-CFv3.0 and CF-DS
- Data Science occupations in ESCO taxonomy

## EDISON Approach: e-CFv3.0 and CF-DS

- Competence Framework for Data Science (CF-DS) definition will be built based on European e-Competence framework for IT (e-CFv3.0)
  - Linking scientific research cycle/flow, organizational roles, competences, skills and knowledge
  - Defining Data Science Body of Knowledge (DS-BoK)
  - Mapping CF-DS and DS-BoK to academic disciplines in a DS Model Curriculum (MC-DS)



#### European e-Competence Framework 3.0 overview

| Dimension 1<br>5 e-CF areas<br>(A – E) | Fareas 40 e-Competences identified             |     |     | Dimension 3<br>e-Competence proficiency levels<br>e-1 to e-5, related to EQF levels 3-8 |     |     |  |
|----------------------------------------|------------------------------------------------|-----|-----|-----------------------------------------------------------------------------------------|-----|-----|--|
|                                        |                                                | e-1 | e-2 | e-3                                                                                     | e-4 | e-5 |  |
| A. PLAN                                | A.1. IS and Business Strategy Alignment        |     |     |                                                                                         |     |     |  |
|                                        | A.2. Service Level Management                  |     |     |                                                                                         |     |     |  |
|                                        | A.3. Business Plan Development                 |     |     |                                                                                         |     |     |  |
|                                        | A.4. Product/Service Planning                  |     |     |                                                                                         |     |     |  |
|                                        | A.5. Architecture Design                       |     |     |                                                                                         |     |     |  |
|                                        | A.6. Application Design                        |     |     |                                                                                         |     |     |  |
|                                        | A.7. Technology Trend Monitoring               |     |     |                                                                                         |     |     |  |
|                                        | A.8. Sustainable Development                   |     |     |                                                                                         |     |     |  |
|                                        | A.9. Innovating                                |     |     |                                                                                         |     |     |  |
| B. BUILD                               | B.1. Application Development                   |     |     |                                                                                         |     |     |  |
|                                        | B.2. Component Integration                     |     |     |                                                                                         |     |     |  |
|                                        | B.3. Testing                                   |     |     |                                                                                         |     |     |  |
|                                        | B.4. Solution Deployment                       |     |     |                                                                                         |     |     |  |
|                                        | B.5. Documentation Production                  |     |     |                                                                                         |     |     |  |
|                                        | B.6. Systems Engineering                       |     |     |                                                                                         |     |     |  |
| C. RUN                                 | C.1. User Support                              |     |     |                                                                                         |     |     |  |
|                                        | C.2. Change Support                            |     |     |                                                                                         |     |     |  |
|                                        | C.3. Service Delivery                          |     |     |                                                                                         |     |     |  |
|                                        | C.4. Problem Management                        |     |     |                                                                                         |     |     |  |
| D. ENABLE                              | D.1. Information Security Strategy Development |     |     |                                                                                         |     |     |  |
|                                        | D.2. ICT Quality Strategy Development          |     |     |                                                                                         |     |     |  |
|                                        | D.3. Education and Training Provision          |     |     |                                                                                         |     |     |  |
|                                        | D.4. Purchasing                                |     |     |                                                                                         |     |     |  |
|                                        | D.5. Sales Proposal Development                |     |     |                                                                                         |     |     |  |
|                                        | D.6. Channel Management                        |     |     |                                                                                         |     |     |  |
|                                        | D.7. Sales Management                          |     |     |                                                                                         |     |     |  |
|                                        | D.8. Contract Management                       |     |     |                                                                                         |     |     |  |
|                                        | D.9. Personnel Development                     |     |     |                                                                                         |     |     |  |
|                                        | D.10. Information and Knowledge Management     |     |     |                                                                                         |     |     |  |
|                                        | D.11. Needs Identification                     |     |     |                                                                                         |     |     |  |
|                                        | D.12. Digital Marketing                        |     |     |                                                                                         |     |     |  |
| E. MANAGE                              | E.1. Forecast Development                      |     |     |                                                                                         |     |     |  |
|                                        | E.2. Project and Portfolio Management          |     |     |                                                                                         |     |     |  |

- 4 Dimensions
  - Competence Areas
  - Competences
  - Proficiency levels
  - Skills and Knowledge
- 5 Competence Area defined by ICT Business Process stages
  - Plan
  - Build
  - Run
  - Enable
  - Manage

-> Refactor to Scientific Research cycle/workflow (and linked to Scientific Data Lifecycle)

 See example of RI manager at IG-ETRD wiki and meeting

- Each competence has 5 proficiency level
  - Ranging from technical to engineering to management to strategist/expert level
- Knowledge and skills property are defined for/by each competence and proficiency level (not unique)

#### KU KDM'16

# Definitions (according to e-CFv3.0)

- **Competence** is a demonstrated ability to apply knowledge, skills and attitudes for achieving observable results.
  - Competence vs Competency (e-CF vs ACM)
    - Competence is ability acquired by training or education (linked to learning outcome)
    - Competency is similar to skills or experience (acquired feature of a person)
  - Competence can be treated as outcome of learning or training
- Knowledge in the context of competence definition is treated as something to know, to be aware of, familiar with, and obtained as a part of education.
- **Skills** is treated as provable ability to do something and relies on the person's experience.

### Data Science occupations in ESCO taxonomy (1)

| Professionals                                                    |                                       |                                                                   |                                                |
|------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|------------------------------------------------|
| Science and<br>engineering<br>professionals                      | Data Science<br>Professionals         | Data Science<br>professionals not<br>elsewhere classified         | Data Scientist                                 |
|                                                                  |                                       |                                                                   | Data Science Researcher                        |
|                                                                  |                                       |                                                                   | (Big) Data Analyst                             |
|                                                                  |                                       |                                                                   | Data Science (Application)<br>Programmer       |
|                                                                  |                                       |                                                                   | Business Analyst                               |
|                                                                  | Database and network professionals    | Large scale (cloud) data storage designers and administrators     | Large scale (cloud) databas designer*)         |
|                                                                  |                                       | Database designers and administrators                             | Large scale (cloud) databas<br>administrator*) |
|                                                                  |                                       | Database and network<br>professionals not<br>elsewhere classified | Scientific database administrator*)            |
| Information and<br>communications<br>technology<br>professionals | Data Science technology professionals | Data handling<br>professionals not<br>elsewhere classified        | Digital Librarian                              |
|                                                                  |                                       |                                                                   | Data Archivist                                 |
|                                                                  |                                       |                                                                   | Data Steward                                   |
|                                                                  |                                       |                                                                   | Data curator                                   |

### Data Science occupations in ESCO taxonomy (2)

| Technicia | ans and associate profe                               | essionals                                        |                                                                   |                                                 |
|-----------|-------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|
|           | Science and<br>engineering associate<br>professionals | Data Science Technology<br>Professionals         | Data Infrastructure<br>engineers and<br>technicians               | Big Data facilities Operators                   |
|           |                                                       |                                                  |                                                                   | Large scale (cloud) data storage operators      |
|           |                                                       |                                                  | Database and network<br>professionals not<br>elsewhere classified | Scientific database operator*)                  |
| Manager   | S                                                     |                                                  |                                                                   |                                                 |
|           | Production and<br>specialised services<br>managers    | Data Science/Big Data<br>Infrastructure Managers |                                                                   | Data Science/Big Data<br>Infrastructure Manager |
|           |                                                       |                                                  | Research Infrastructure<br>Managers                               | RI Manager                                      |
|           |                                                       |                                                  |                                                                   | RI Data storage facilities manager              |
| Clerical  | support workers                                       |                                                  |                                                                   |                                                 |
|           | General and<br>keyboard clerks                        |                                                  |                                                                   |                                                 |
|           | Data handling support<br>workers (alternative)        | Data and information entry and access            | Digital Archivists and Librarians                                 | Digital Librarian                               |
|           |                                                       |                                                  |                                                                   | Data Archivist                                  |
|           |                                                       |                                                  |                                                                   | Data Steward                                    |
| U KDM'16  |                                                       | Cloud, Big Data an                               | nd Data Science                                                   | Data curator                                    |