Security Context Management
with
XML based security tickets and tokens

Yuri Demchenko <demch@science.uva.nl>
AIRG, University of Amsterdam
Outline

• Fine grained access control with Generic AAA Authorisation framework and RBAC
 ◆ Combined push-pull and agent-push models using AuthZ tickets and tokens
• GAAAPI implementation detail and ticket/token examples
 ◆ Collaboratory.nl Authorisation service
Requirements to Policy based Access Control

- Multidomain and inter-institutional
- Multiple policy formats
- Policy combination
- Multiple policy authority
- Separate policy management
- Dynamic policy association
Policy based Authorization decision
- Req \{AuthNtoken, Attr/Roles, PolicyTypeId, ConditionExt\}
- RBE (Req + Policy) =>
 => Decision \{ResponseAAA, ActionExt\}
- ActionExt = \{ReqAAAEExt, ASMcontrol\}
- ResponseAAA =
 \{AckAAA/RejectAAA, ReqAttr, ReqAuthN, BindAAA
 (Resource, Id/Attr)\}

• Defined by Resource owner
• Translate logDecision => Action
• Translate State => LogCondition
RBAC: main components and dataflow – XACML model

PEP/AEF - Policy Enforcement Point (authorisation enforcement function)

PDP/ADF - Policy Decision Point (authorisation decision function)

PIP - Policy Information Point

AA - Attribute Authority

PAP - Policy Authority Point
Site AuthZ service implementing RBAC and combined pull-push model

Issues to be addressed:
- PEP and PDP chaining
- Policy combining
- Multiple domains
Site AuthZ service implementing combined agent and push model for complex resource

Issues to be addressed:
- Multi-component and multidomain resources
- Policy push and/or token based access control
Policy based AC: Implementation suggestions

- PDP and PAP must share common namespace
- Policy and respectively PAP should be referenced in the request message explicitly or known to PEP and PDP a priory
- Every PEP in the chain of policy enforcement should take care of the whole request evaluation/enforcement by calling to a single (master) PDP.
 - PEP should not do multiple decision combination.
- Only one PDP should provide a final decision on the whole request
 - However, PEP may have a possibility to request different PDP types based on request semantics/namespace and referred policy
- When using ticket/token based access control model, the PEP should understand and have a possibility to validate the AuthZ ticket issued by trusted PDP
 - The AuthZ ticket should have validity and usage restriction and contain information about the decision and the resource.
- For the further validation of the AuthZ tickets/token, the PEP may cache the ticket locally to speed-up the validation procedure.
Traditional Access Control model – setting up trust and authority relations

- Policy, attributes semantics and namespaces are known a priory to all participating parties
 - A requestor knows what information to present to adhere to a specific policy and in what format
- PEP and PDP locations are known and interacting parties are known
- Trust relations between PDP, AA and resource are established
 - Resource trusts PDP’s decision that can be delivered to a Resource in a form of AuthzTicket or based on default trust between PEP and Resource
 - Root of policy enforcement hierarchy, like in real life, belongs to the resource owner

- This approach is not sufficient for emerging Service Oriented Architecture (SOA)
Open policy enforcement model in WSA/SOA using WS-Policy attachment mechanisms

- Linking dynamically all components of the access control system
- Policy is attached to any component of the service description in WSDL format
- Interacting services will fetch policy document and apply restrictions/rules to elements, which declared policy compliance requirements
- Provides a basis for mutual authorisation
Attaching policy to WSDL - Example

```xml
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/
    xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
    xmlns:cnl="http://cnl.telin.nl/cnl" xmlns:policy="cnl-policy-schema.xsd"
    targetNamespace="http://cnl.telin.nl/cnl">
    <message name="ViewExperimentRequest" wsp:PolicyURIs="cnl-policy-02example.xml">
        <part name="coordinateX" type="xs:string"/>
        <part name="coordinateY" type="xs:string"/>
        <part name="zoom" type="xs:int"/>
    </message>

    <<< snip >>>
    <wsp:PolicyAttachment ...
        wsp:AppliesTo>
        <x:DomainExpression/> +
    </wsp:AppliesTo>
    ( <wsp:Policy>... </wsp:Policy>  |  \\
    <wsse:Security>... </wsse:Security> ?
    ...
    </wsp:PolicyAttachment>

    <wsp:UsingPolicy wsdl:Required="true"/>
</definitions>
```
Implementation: Authorisation Service operation in a CNL2 Demo system

1. Login
2. JNLP
3. JNLP
4. getJobInfo()
5, 10 startSession()
11, 14 goLeft()
6, 9 startSession()
7, 8 requestDecision()
12, 13 checkAuthZStatus()

Note: we assume SSL TCP connections all over.

Locations/trust domains

JNLP – Java Network Launch Protocol
CHEF – Collaborative tool
Surabaya – Collaborative Workspace environment
Before deploying security infrastructure

Design conventions and agreements

- Key distribution and trust establishing
 - *Currently, in search of simple consistent model*

- Policy definition and format including subject, attributes/roles, actions semantics and namespaces
 - Compatibility with existing formats, e.g. SAML, XACML
 - Policy format defines/defined by the PDP implementation

- Secure credentials/ticket format
 - Standard vs proprietary

- Protocols and Messages format
 - SOAP + XACML Request/Response
 - SOAP + SAML + XACML
Session management in CNL2 AuthZ system

- Maintaining session is a part of generic RBAC functionality
- Session can be started only by authorised Subject/Role
 - Session can be joined by other less privileged users
- SessionID is included into AuthzTicket together with other decision attributes
 - Signed AuthzTicket is cached by PEP or PDP
- If session is terminated, cached AuthzTicket is deleted
 - Note: AuthzTicket revocation should be done globally for the AuthZ trust domain
Tickets/Tokens handling in AuthZ system

- AuthzTicket is issued by PDP and may be issued by PEP
- AuthzTicket must be signed
- AuthzTicket contains all necessary information to make local PEP-Triage Request verification
- When using AuthzTokens, AuthzTickets must be cached; Resolution mechanism from token to ticket must be provided
Mapping between CNLAuthzTicket, XACML Request/Response and SAML2.0 Authorization Assertion

SAML 2.0 vs SAML 1.1
- Better security features
- Issuer and Subject are top level elements
- Encrypted elements for Subject, Attributes, Evidence
- Special profile for XACML

General problems for AuthZ
- Attributes can be placed only as deep as 5 level down: Assert/AzStm/Evid/AttrAsrt/Attr/AttrValue
- Ambiguous location for PolicyURIs and SessionID
- SAML1.1 ConfirmationData element is extensible type – compatibility problems
Using SAML 1.1/2.0 for AuthzTicket expression

SAML 2.0 vs SAML 1.1
- Better security features
- Issuer and Subject are top level elements
- Encrypted elements for Subject, Attributes, Evidence
- Special profile for XACMLAuthzStatement

General problems for Authorisation assertion
- Attributes can be placed only as deep as 5 level down: Assertion/AuthzStatement/Evidence/AttributeAssertion/Attribute/AttributeValue
- Ambiguous location for PolicyURIs and SessionID
- Ambiguous mapping for XACML/Obligation to SAML/(Condition or Advice)
- SAML1.1 ConfirmationData element is an extensible type – compatibility problems
- XACML Obligation element
 - Can be mapped to SAML Condition element or SAML Advice element
CNLAuthzTicket example – 1011 bytes

<cnl:CNLAuthzTicket xmlns:AAA="http://www.AAAarch.org/ns/AAA_BoD"
PolicyURIs="CNLpolicy01" SessionIndex="JobXPS1-2005-001"
TicketID="c24d2c7dba476041b7853e63689193ad">
 <!-- Mandatory elements -->
 <cnl:Decision
 ResourceID="http://resources.collaboratory.nl/Philips_XPS1">Permit</cnl:Decision>
 <cnl:Validity NotBefore="2005-02-13T01:26:42.699Z"
 NotOnOrAfter="2005-02-14T01:26:42.699Z"/>
 <!-- Additional elements -->
 <cnl:Subject
 Id="subject">
 <cnl:SubjectID>WHO740@users.collaboratory.nl</cnl:SubjectID>
 <cnl:SubjectConfirmationData>SeDFGVHYTY83ZXxEdsweOP8Iok</cnl:SubjectConfirmationData>
 <cnl:JobID>CNL2-XPS1-2005-02-02</cnl:JobID>
 <cnl:Role>analyst@JobID;expert@JobID</cnl:Role>
 </cnl:Subject>
 <cnl:Resource>http://resources.collaboratory.nl/Philips_XPS1</cnl:Resource>
 <cnl:Actions>
 <cnl:Action>cnl:actions:CtrlInstr</cnl:Action>
 <cnl:Action>cnl:actions:CtrlExper</cnl:Action>
 </cnl:Actions>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> ... </ds:Signature>
</cnl:CNLAuthzTicket>
CNLAuthzTicket XML Signature element – 957 bytes
(total signed ticket 1968 bytes)

```xml
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
  <ds:SignedInfo>
    <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
    <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-shal"/>
    <ds:Reference URI=""/>
      <ds:Transforms>
        <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
        <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments"/>
      </ds:Transforms>
      <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
      <ds:DigestValue>nrNrZZDiw/2aDnKXFEHSeoixnsc="</ds:DigestValue>
    </ds:Reference>
  </ds:SignedInfo>
  <ds:SignatureValue>
    0IZt9WsJT6an+tIxhhTPtiztDpZ+iynx7K7X2Cxd2iBwCUTQ0n61Szv81DKl1Wsq75IsHfusnm56
    zT3fKU1zEUsob7p6oMLM7hb42+vjfvNeJu2roknhIDzruMrr6hMDsIfaotURepu7QCT0sADm9If
    X89Et55EkSE9o9qBD8=
  </ds:SignatureValue>

  <ds:KeyInfo> << ... snip ... >> </ds:KeyInfo>
</ds:Signature>
```
RSA <ds:KeyInfo> element – 1010 bytes
(total signed ticket with KeyInfo - 3078 bytes)

<ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
 MIICADAwggDgMBg0GCSqGSI4paiaDQYJKoZIhvcNAQEEAwQgMB0GA1UdDwEB/wQEAwIBBAYDBAeGhoaHmk2PCX5CAQAwBQgMB0GA1UdDwEB/wQEAwIBBAYDBAeGhoaHmk2PCX5CAwEwYDVR0TAQHBAQowRzElMA8GA1UdDwEB/wQEAwIBBAYDBAeGhoaHmk2PCX5CAwEwYDVR0TAQHBAQowRzElMA8GA1UdDwEB/wQEAwIBBAYDBAeGhoaHmk2PCX5CAwEwYDVR0TAQHBAQowRzElMA8GA1UdDwEB/wQEAwIBBAYDBAeGhoaHmk2PCX5CAwEwYDVR0TAQH
 </ds:X509Certificate>
 </ds:X509Data>
 <ds:RSAKeyValue>
 <ds:Modulus>
 3Q6wYVZq92w/Xqou105uMoyEcX74wCr99xBm070y6S1IC423AQt4zSeBe2tBo10HFW7hf2g8f8
 </ds:Modulus>
 <ds:Exponent>AQAB</ds:Exponent>
 </ds:RSAKeyValue>
</ds:KeyInfo>
CNLAuthzToken example – 293 bytes

```
<cnl:CNLAuthzToken TokenID="ed9d969e1262ba1d3a7f33dbd670dd94">
  <cnl:TokenValue>
  0IZt9WsJT6an+TIxhHTPtitzDpZ+iynx7K7X2Cxd2iBwCUTQ0n61Szv81DK11Wsq75IsHfusnm56zT3fhKU1zEUsob7p6oMLM7hb42+vjfvNeJu2roknhIDzruMrr6hMDsIfaotURepu7QCT0sADm9IfX89Et55EkSE9oE9qBD8=
  </cnl:TokenValue>
</cnl:CNLAuthzToken>
```

- CNLAuthzToken is constructed of the CNLAuthzTicket TicketID and SignatureValue
- CNLAuthzToken use suggests caching CNLAuthzTicket’s
 <Condition xsi:type="typens:cnl:session-id">JobXPS1-2005-001</Condition>
 <Condition xsi:type="typens:cnl:policy-uri">CNLpolicy01</Condition>
 </Conditions>
 <AuthorizationDecisionStatement Decision="Permit" Resource="http://resources.collaboratory.nl/Philips_XPS1">
 <Evidence>
 <Assertion AssertionID="f3a7ea74e515ffe776b10a7eef0119d7" IssueInstant="2005-02-15T14:53:23.542Z" Issuer="cnl:subject:CNLAAAauthority" MajorVersion="1" MinorVersion="1">
 <AttributeStatement>
 <Subject>
 <NameIdentifier Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress" NameQualifier="cnl:subject">WHO740@users.collaboratory.nl</NameIdentifier>
 <SubjectConfirmation>
 <ConfirmationMethod>signed-subject-id</ConfirmationMethod>
 <ConfirmationData>
 PBL1R0aZRzd2mcq979j8eDpJ5VT6BxxWBtSApC5BPnIsfHRU0oOpWQowXBw2TmO2dJGNzFWhMInz
 XU3/wSDjyv+siO2JGfy27U9eqkmGQyv1hMluRwUAa<XX9/79A0k/DBIksJMDZ5DnG0sMc+zyqn
 KogfMqHkDpPwHF6U</ConfirmationData>
 </SubjectConfirmation>
 </Subject>
 </AttributeStatement>
 <AttributeValue xsi:type="typens:cnl:job-id">CNL2-XPS1-2005-02-02</AttributeValue>
 <AttributeValue xsi:type="typens:cnl:role">analyst@JobID;expert@JobID</AttributeValue>
 </Attribute>
 </Assertion>
 </Evidence>
 </AuthorizationDecisionStatement>
</Assertion>
<cnl:CNLAuthnTicket xmlns:AAA="http://www.AAAarch.org/ns/AAA_BoD"
 TicketID="f35585dfb5edec48de0c7eadb11c17e">
 <!-- Mandatory elements -->
 <cnl:Subject Id="subject">
 <cnl:SubjectID>WHO740@users.collaboratory.nl</cnl:SubjectID>
 <cnl:SubjectConfirmationData>
 0+qQNAVuZW4txMi8DH6DFy7eLMGxSfKDJY6ZnY4UW5Dt0JFtat1EprUtgnjCkzrJUMvWk9qtUznasDdUGsP4ZY7dgab+PHiU91ClusZbztu/ZIjNqCnw5su1BQLTumC8ZTtYKKJi4WWs+bMMbP8mFNQm
 +M7F4bJIPBfLxf0bk4=
 </cnl:SubjectConfirmationData>
 <!--Optional elements -->
 <!--Optional elements -->
 <cnl:SubjectAttribute attrname="urn:cnl:subject:attribute:job-id">
 CNL2-XPS1-2005-02-02
 </cnl:SubjectAttribute>
 <cnl:SubjectAttribute attrname="urn:cnl:subject:attribute:role">
 analyst@JobID;expert@JobID
 </cnl:SubjectAttribute>
 </cnl:Subject>
</cnl:CNLAuthnTicket>
CNLAuthnToken is constructed of the CNLAuthnTicket TicketID and SubjectConfirmationData which is encrypted SubjectID value

- CNLAuthzToken must be self-sufficient and doesn’t require caching CNLAuthnTicket’s
Conclusion and Discussion

- Tickets and tokens handling infrastructure can be used for general security context handling, including:
 - Combining pull and push models
 - Simple mechanisms for push-policy operation in open environment
 - SSO and Identity management
- Further development (by AIRG) will include dynamic trust and virtual associations management based on Job/VO agreement