I\ VL -
CEYrSERS

i\ VL
CECYSERS

GENERALISED ARCHITECTURE FOR DYNAMIC INFRASTRUCTURE SERVICES

Large Scale Integrated Project
Co-funded by the European Commission within the Seventh Framework Programme

Grant Agreement no. 248657

Strategic objective: The Network of the Future (ICT-2009.1.1) SEVENTH FRAMEWORK
Start date of project: January 1st, 2010 (36 months duration) { :*

Security Architecture for On-Demand Infrastructure Services
Provisioning

Version 0.2

Due date: Not applicable
Submission date: Not applicable
Deliverable leader: University of Amsterdam
Author list: Yuri Demchenko

Canh Ngo

Dissemination Level
X] Pu: Public
|:| PP: Restricted to other programme participants (including the Commission Services)
|:| RE: Restricted to a group specified by the consortium (including the Commission Services)

|:| CO: Confidential, only for members of the consortium (including the Commission Services)

Abstract

This document provides the general description of the security architecture for GEYSERS on-demand
infrastructure services provisioning, its major components and implementation suggestions.

Table of Contents

0 Objectives and scope of document

1 Introduction

2 GEYSERS Architecture Overview

2.1

GEYSERS Architecture

Figure 2.2-1: GEYSERS Architecture

2.2
2.3
2.4
2.5

Logical Infrastructure Composition Layer (LICL)

General use-cases in On-demand Infrastructure Services Provisioning
ISOD Abstract Provisioning model

GEYSERS Service Delivery Framework (SDF)

O\ e
CEYSERS

11
12
15

3 General Security requirements for On-demand Infrastructure Services Provisioning 16

3.1 General Requirements to Security Services and Authorization Authentication
Infrastructure 16
4 Existing Security Frameworks and Platforms 18
4.1 Role Based Access Control 18
4.2 Generic AAA Authorization Framework 18
4.3 Dynamic Access Control Services in existing Cloud laaS platforms 20
4.3.1 Amazon AWS Security 21
4.3.2 Access Control Service for Windows Azure Cloud platform 21
5 Security Architecture 23
5.1 Multi-Layer Security Services 23
5.2 Authentication and Authorization Infrastructure 23
5.3 Security Services Lifecycle Management Model 26
5.4 Security context management in VI resources provisioning 28
5.4.1 Session types and security context 28
5.4.2 Using Authorization tokens for security context management 29
6 AAl Components 30
6.1 Identity Management Service 30
6.2 Authorization Service 31

6.3
6.4
6.5

Token Validation Service
The Security Gateway library
AAl Interfaces

7 Common Security Services Interface (CSSI)

7.1
7.2
7.3
7.4
7.5

General CSSI functional structure

Authentication and Delegation Interface

Authorization Interface

Authentication and Authorization for NIPS client-server
AAIl Request and Response Formats

8 GEYSERS Access Control Use Cases

8.2

8.1.1 Access Control Use Cases at NCP+ (VIO-N)
8.1.2 Access Control Use Cases at Upper-LICL (VIP)
8.1.3 Access Control Use Cases at Lower-LICL (PIP)
XACML Attribute Profile for GEYSERS

8.2.1 Resource profile

8.2.2 Subject profile

8.2.3 Action profile

9 AAl Implementation with GAAA Toolkit

9.1

9.2

Authentication bundle

9.1.1 Service configuration

9.1.2 Certificate and public-private keypair generation
9.1.3 User Management

Authorization bundle

9.2.1 Service configuration

9.2.2 Policy management

10 Conclusion

11 References

Appendix A Using SAML and XACML to support generic Authorization scenario

Appendix B Web Services Security Framework (WS-Security)

Appendix C Conformance to WS-Interoperability Basic Profile and Basic Security Profile

Appendix D GSS-API Summary

32
32
32

33
33
36
37
38
41

41
41
42
45
47
47
47
48

48
48
48
49
49
49
49
50

52

52

56

73

74

76

Objectives and scope of document

This document provides the general description of the security architecture for GEYSERS on-demand
infrastructure services provisioning, its major components and implementation suggestions.

The major objectives of the document is to provide necessary information to developers of other components
of the GEYSERS architecture how to integrate and use security services to achieve secure operation of the whole
GEYSERS infrastructure.

O\ e
CEYSERS

Introduction

The main objective of the GEYSERS project is to address some of the key technical challenges to enable on-demand
Network and IT resources and infrastructure services provisioning. The Authentication, Authorization Infrastructure (AAl)
is as an important component of the supporting infrastructure for on-demand Infrastructure Services Provisioning (ISOD).
Consistent AAl operation requires interaction of the related AAl components at all ISOD layers and during all provisioning
stages.

This document describes the result of the development of the AAIl architecture for ISOD. The proposed architecture
attempts to address key access control problems when integrating heterogeneous virtualisation platforms and Control and
Management planes. The proposed architecture also targets to ensure future compatibility with the emerging Cloud
platforms and physical resources access control solutions and infrastructures.

The report is organised as follows. Section 2 provides short description of the GEYSERS architecture including GEYSERS
Service Delivery Framework (SDF) followed by the description of the basic use cases and abstraction model used for
security services and AAl definition and development. Section 3 defines the general requirements to ISOD security
infrastructure and services.

Section 4 provides an overview of the generic access control models such as Role Based Access Control (RBAC), Generic
AAA Authorization Framework (GAAA-AuthZ) and its extension for dynamically provisioned services Dynamic Access
Control Infrastructure (DACI). The section describes also solutions used in existing Cloud laaS platform such as Amazon
Web Services (AWS) and Microsoft Azure.

Section 5 describes the proposed AAI architecture for on-demand Infrastructure Services Provisioning (ISOD) that address
both tasks — secure operation or the provisioning infrastructure and provisioning of the Dynamic Access Control
Infrastructure (DACI) as a part of the on-demand provisioned infrastructure. The proposed architecture framework
includes also such components as Security Services Lifecycle Management (SSLM) model and security context management
framework. It identifies key functionalities to support multidomain network+IT infrastructure services and introduces a
number of mechanisms and solutions to support them, in particular: AuthZ ticket format for extended AuthZ session
management, Token Validation Service (TVS) to enable token based policy enforcement, policy Obligation Handling
Reference Model (OHRM), and XACML policy profile for ISOD. The proposed architecture will allow smooth integration
with other authorization frameworks as currently used and developed by Cloud and networking community.

Section 6 describes how the proposed GAAA-ISOD architecture is implemented in the current version of the GAAA Toolkit.
It provides general description of the GAAA Toolkit structure and functionalities to support network resource provisioning
and more detailed description of such components as TVS and GAAAPI that can be used as a pluggable component to add
AAA/AuthZ services to different NRPS frameworks.

Section 7 provides detailed description of the Common Security Services Interface (CSSI) that is used as a common
generalised interface for accessing AAI/GAAA-ISOD services and for their simple integration with other components of the
GEYSERS architecture.

Finally, section 7 provides summary of the current results and suggests further developments.

GEYSERS Architecture Overview

GEYSERS Architecture

The GEYSERS architecture re-qualifies the interworking of legacy planes by means of a virtual infrastructure representation
layer for network and IT resources and its advanced resource provisioning mechanisms. The GEYSERS architecture presents
an innovative structure by adopting the concepts of Infrastructure as a Service (laaS) and service-oriented networking to
enable infrastructure operators to offer new network and IT converged services. On one hand, the service-oriented and
laaS paradigm enable flexibility of infrastructure provisioning in terms of configuration, accessibility and availability for the
user. On the other hand, the layer-based structure of the architecture enables separation of functional aspects of each of
the entities involved in the converged service provisioning, from the service consumer to the physical infrastructure. Figure
2.1 shows the layering structure of the GEYSERS architecture reference model comprised of four layers: the Service
Middleware Layer (SML), the enhanced Network Control Plane (NCP), the novel Logical Infrastructure Composition Layer
(LICL) and the physical infrastructure.

The Logical Infrastructure Composition Layer (LICL) [3] is a middleware aiming at decoupling infrastructure resource
management from the actual service provisioning. This is performed by adopting an Infrastructure as a Service (laaS)
management model for both optical network and IT resources. Although 1aaS is a well-known model in IT environment, it
is not so common for networking, in favour of Network as a Service (NaaS$)..

In addition to laaS, LICL is based in infrastructure resource virtualisation paradigms for granting flexible infrastructure
service provisioning. A number of projects have successfully dealt with virtualisation for leveraging infrastructure resources
utilisation. At the same time, virtualisation allows reducing capitalisation costs, which is especially critical for scientific
communities where the equipment acquisition and network deployment costs considerably diminish project budgets.

The LICL is located between the physical infrastructure resources and the upper layers in GEYSERS architecture, such as
the Network Control Plane and the Service Middleware Layer. In GEYSERS architecture, the LICL is responsible for the
creation and maintenance of virtual resources as well as virtual infrastructures. In the context of GEYSERS, infrastructure
virtualisation is the creation of a virtual representation of a physical resource (e.g., optical network node or computing
device), based on an abstract model that is often achieved by partitioning or aggregation. A virtual infrastructure is a set
of virtual resources interconnected together that share a common administration framework. Within a virtual
infrastructure, virtual connectivity (virtual link) is defined as a connection between one port of a virtual network element
to a port of another virtual network element.

SERVICE CONSUMER SERVICE CONSUMER SERVICE CONSUMER

© vruaLTManacer (viTv) (@) O viRTUALIT MANAGER (viTv) ()

ON-DEMAND
NETWORK +IT
PROVISIONING

IT-AWARE NETWORK CONTROL PLANE LAYER (NCP+)

NCP CONTROLLERS . .-\._NCP CONTROLLERS

DYNAMIC
VI RE-PLANNING

VIIRTUAL I|NFRASiI'RUCTURE {VIn)
it
AL =

¢ i 4 ‘

NETWORK +IT
VIRTUALIZATION

Figure 2.2-1: GEYSERS Architecture

Logical Infrastructure Composition Layer (LICL)

LICL is the key element in the GEYSERS architecture in order to provision infrastructure services. This section
provides a short description of the functional architecture of the LICL that provides a practical implementation
of the abstract laaS provisioning model described in section VIII (refer to this section for PIP, VIP and VIO
defintion).

The LICL is divided into two main sub-systems depending on the functionalities implemented in each sub-system
and also depending on the role that uses such functionalities. On the one hand, there is the upper-LICL, which
is responsible mainly for the virtual infrastructure management and satisfies the needs and requirements of
the virtual infrastructure provider. On the other hand we have, the lower-LICL, which is responsible for physical
resource virtualisation and management and which satisfies the requirements of the physical infrastructure
provider.

The upper-LICL is composed of different modules. The functionalities covered at this level are the virtual
infrastructure creation, management and re-planning, and the SLA enforcement. The virtual infrastructure
creation is done as a composition of different virtual resources available from one or multiple PIPs. Such a virtual
infrastructure is provisioned towards the virtual infrastructure operator as a unit. Furthermore, the upper-LICL
offers dynamic re-planning functionalities as a response to the changing requirements of the VIO. Such dynamic
re-planning may involve the inclusion of new resources to the virtual infrastructure, the release of un-used
resources, or even the resizing of some of them (e.g., increase or decrease the total bandwidth capability of a
virtual link). As a part of the system oriented to provide dynamic infrastructure services, the upper-LICL provides
capabilities to ensure SLA levels are met during the whole service lifecycle.

The lower-LICL covers the functionalities regarding physical resource abstraction and resource virtualisation.
The tools offered by the lower-LICL are used by the PIP in order to manage its own infrastructure. The lower-
LICL is responsible for the physical resource abstraction that basically comprehends all the necessary steps to
create a logical resource representing the physical resource. It also is in charge of the virtual resource creation
and management, as well as the resource monitoring and configuration. The lower-LICL also offers an
information service, which is used by the PIP to send information about its domain capabilities towards the
different VIPs.

Figure 2.3 depicts the functional architecture of the LICL, split into the two aforementioned components. It also
shows the different interfaces in each component in order to communicate with the outer world. In the case of
the upper-LICL, it has the Management-to-LICL (MLI) interface, which offers all the virtual infrastructure
management operations (e.g., request, re-planning, decommission) and then the SML-to-LICL (SLI) interface
and the Call Controller Interface (CCl), used to offer operation capabilities over the virtual infrastructure. In
detail, the SLI offers operations over the virtual IT resources and the CCl over the virtual network resources.
However, it is remarkable that this is a logical differentiation, since the implementation of the system offers
one interface and handles the virtual resources in a converged manner independently of its nature. Finally, the
lower-LICL offers the VR request service, used to request for single virtual resources, the Resource Operation
Service, that represents the operation interfaces for the virtual resources, and the information service, which
is used to exchange information with the different physical infrastructure providers.

O CCl/SLI O ML
— UPPERLICL i
. VI Control and VI Service SLA.& Service
Security — — Lifecycle
Management Management M
anagement

’ E VR Discovery

Resource
Operation v VR Request v .
Service Service Information
O O :
Service
~— LOWER LICL
l) \ |
Security VRControland | | VR Service VR Publisher
Management Management
PR SLA & Service
M IMF Lifecycle
anagement M
anagement
i PIP Admin
Service

Figure 2.3?: LICL functional architecture overview

General use-cases in On-demand Infrastructure Services

Provisioning

The two basic use-cases for on-demand infrastructure service provisioning can be considered: large scientific
infrastructures and network infrastructure provisioning [4, 5, 6]. These use-cases represent the two different
perspectives in developing infrastructure services — the user and application developer perspective on one side,
and the provider perspective on the other side. Users are interested in uniform and simple access to the
resource and the services that are exposed as Cloud or Grid resources and can be easily integrated into the
scientific or business workflows. Infrastructure providers are interested in infrastructure resource pooling and
virtualisation to simplify their on-demand provisioning and extend their service offering and business model to
Virtual Infrastructure provisioning.

Figure 2.2 illustrates the typical e-Science infrastructure that includes Grid and Cloud based computing and
storage resources, instruments, control and monitoring system, visualization system, and users represented by
user clients. The diagram also reflects that there may be different types of connecting network links: high-speed
and low-speed which both can be permanent for the project or provisioned on-demand.

The figure also illustrates a typical use-case of a high-performance infrastructure, which is used by two or more
cooperative research groups in different locations. In order to complete their task (e.g. cooperative image
processing and analysis) they require a number of resources and services to process raw data on distributed
Grid, Cloud or proprietary data centers, analyse intermediate data using specialised applications and finally
deliver the resulting data to the scientists. This use-case includes all basic components of the typical e-Science
research process: data collection, initial data mining and filtering, analysis with specialised scientific
applications, and finally presentation and visualisation to the users.

Enterprise/Scientific workflow |

.‘J. Storage

v Data
Input - . o .
Data ~ ikl

' .| Special Data]
! 1 Proc 1 Archive K- ——
.“-k_..._____._._____._.________. : Visual :
| Present | .
Special |} —— | eoonioeees ‘
Proc 2 J

Data
Filtering

Instrum.
Data

,,,,,,,,,,,

Enterprise/Project based

Resourcel) SN ’ DN\ mercloud infastructure
Service ’ / : e <
Provider d SN 1. ‘

iCloud Paas Provider |

iCloud 1aas Provider |

Figure 2.3: Typical usecase for cloud based heterogeneous e-Science or enterprise infrastructure

provisioning.

ISOD Abstract Provisioning model

Figure 2.3 below illustrates the abstraction of the typical project or group oriented Virtual Infrastructure (V1) provisioning

process that includes both computing resources and supporting network that commonly referred as infrastructure services

[4, 5]. The VI is provisioned for two collaborative user groups in different locations that in order to fulfill their task (e.g.

cooperative image processing and analysis) require a number of resources and services to process raw data on distributed

Grid or Cloud data centers, analyse intermediate data on specialist applications and finally deliver the result data to the

users/scientists. The discussed use case contains all basic components of the typical e-Science research process: data

production with scientific instrument (labeled as VIR4 node), initial data mining and filtering (VIR3, VIR5), analysis with

special scientific applications (VIR1, VIR6), and finally presentation and visualisation (VIR1, VIR6) to the users.

The figure also shows the main actors involved into this process, such as Physical Infrastructure Provider (PIP), Virtual
Infrastructure Provider (VIP), Virtual Infrastructure Operator (VIO). The required supporting infrastructure services are
depictured on the left side of the picture and includes functional components and services used to support normal
operation of all mentioned actors.

The LICL (or Virtual Infrastructure Composition and Management (VICM)) layer includes the Logical Abstraction Layer and
the VI/VR Adaptation Layer facing correspondingly lower PIP and upper Application layer. These layers represent
information used by VIO/user applications to access VRI and support necessary logical transformation of the resources
during composition and operation stages. VICM middleware is one of the key functionalities that enables all component
services to interact, includes message processing functionality, middleware security, composition and orchestration
services.

The proposed architectural framework for On-Demand Infrastructure Services provisioning (ISOD) comprises of the
following main components [3, 4]: the Logical Infrastructure Composition Layer (also defined in [3, 4] as Composable
Services Architecture (CSA)) that intends to provide a conceptual and methodological framework for developing
dynamically configurable virtualised infrastructure services; the Infrastructure Services Modeling Framework (ISMF) that
provides a basis for the infrastructure resources virtualisation and management, including description, discovery, modeling,
composition and monitoring; the Service Delivery Framework (SDF) that provides a basis for defining the whole
composable services life cycle management and supporting infrastructure services. Two cross-layer functionalities include
Service Control and Management Plane (CMP) and Security Infrastructure described in this document.

The proposed architecture is a SOA (Service Oriented Architecture) based [7] and uses the same basic operation principle
as known and widely used SOA frameworks, what also provides a direct mapping to the possible VICM implementation
platforms such as Enterprise Services Bus (ESB) or OSGi framework [8,9].

The SDF introduced as a part of the proposed GEYSERS architectural framework (as being developed in [2, 3]) extends the
proposed by the TeleManagement Forum the Service Delivery Framework as a part of the Software Enabled Services
Management Solution [10, 11]. It includes the following main stages: (1) infrastructure creation request sent to VIO or VIP
that may include both required resources and network infrastructure to support distributed user groups and/or
applications; (2) infrastructure planning and advance reservation; (3) infrastructure deployment including services
synchronization and initiation; (4) operation stage, and (5) infrastructure decommissioning. It combines/consolidates in
one provisioning workflow all processes that are run by different supporting systems and executed by different actors.

The main infrastructure component to support SDF is the Service Lifecycle Meatadata Service (MD-SL) that provides
necessary information to store/identify composed services identifiers, stages, versions and also bind this information to
the SLA and provisioning sessions IDs.

Virtual Infrastructure (VI) (operated by VIO1)

' |
VRI2 ! VRIS !
| |
Application/Service Layer : :
| User/
!_JApplic B
|
|
VI Comp & Mngnt Layer (VICM) :
v Operator
| VI/VR Adaptation Layer |
AAl/Policy .
e J VI Provider
Layer

Ctrl & Mngnt
(Orchestratn

Composition
Logical Rsr

sLC
o Metadada

| Logical Abstraction Layer |

(VRI/LR Layer)

PI Provider
Layer

| Pi/PR Adaptation Layer |

-------------- fmmmmmmm
1 Resource | | SLA/ ::Secunly H
1 Config i ! SLM | Cont

L

(PR Layer)

| Pi/PR Layer |

Legend

ND* - Network Domain

VIR* - VI Resource (deployed)
VR — Virtual Resource

LR — Logical Resource

PR — Physical Resource

Figure 2.3. Main actors, functional layers and processes in on-demand infrastructure services provisioning

Physical Resources (PR), including IT resources and network, are provided by Physical Infrastructure Providers (PIP). In
order to be included into VI composition and provisioning by the VIP they need to be abstracted to the Logical Resource
(LR) that will undergo a number of abstract transformations, including possibly also interactive negotiation with the PIP.
The composed VI need to be deployed to the PIP which will create virtualised physical resources (VPR) that may be a part
or a pool of the resources provided by PIP. The deployment process includes distribution of common VI context,
configuration of VPR at PIP, advance reservation and scheduling, and virtualised infrastructure services synchronization
and initiation, to make them available to Application layer consumers.

The proposed abstract model allows outsourcing the provisioned VI operation to the VI Operator (VIO) who is from the
user point of view provides valuable services of the required resources consolidation - both IT and networks, and takes a
burden of managing the provisioned services.

The described model is being developed in the GEYSERS project [10] that targets to provide a generic architecture for Cloud
Infrastructure as a Service (laaS) provisioning model, allowing also to use and integrate other Clouds provisioning models
for individual resources virtualisation.

The proposed architecture provides a basis and motivates development of the generalised framework for provisioning
dynamic security infrastructure that includes Security Services Lifecycle Management model (SSLM), common security
services interface (CSSl), and related security mechanisms to allow the consistency of the dynamically provisioned security
services operation. The required security infrastructure should provide a common framework for operating security
services at VIP and VIO layer and be integrated with PIP’s legacy security services.

It is important to mention that discussed here physical and virtual resources are in fact complex software enabled systems
with their own operational systems and security services. The VI provisioning process should support their smooth
integration into the common federated VI security infrastructure allowing to define a common access control policies.

Access decision made at the VI level should be trusted and validated at the PIP level, what can be achieved by creating
dynamic security associations during the provisioning process.

GEYSERS Service Delivery Framework (SDF)

The LICL operation relies on the well-defined services lifecycle management (SLM) model that is defined based on the
TeleManagement Forum Service Delivery Framework (SDF) [10] that includes both the service delivery stages and required
supporting infrastructure services.

Figure 2.4 illustrates the main service provisioning or delivery stages that address specific requirements of the provisioned
on-demand virtualised infrastructure services:

Service Request Stage (including SLA negotiation). The SLA can describe QoS and security requirements of the negotiated
infrastructure service along with information that facilitates authentication of service requests from users. This stage also
includes generation of the Global Reservation ID (GRI) that will serve as a provisioning session identifier and will bind all
other stages and related security context.

Composition/Reservation Stage that also includes Reservation Session Binding with the GRI, which provides support for
complex reservation processes in multi-domain multi-provider environments. This stage may require access control and
SLA/policy enforcement.

Deployment Stage, including services Registration and Synchronisation. The deployment stage begins after all component
resources have been reserved and includes distribution of the common composed service context (including security
context) and binding the reserved resources or services to the GRI as a common provisioning session ID. The Registration
and Synchronisation stage (which can be considered as optional) specifically targets scenarios with provisioned service
migration or re-planning. In a simple case the Registration stage binds the local resource or hosting platform run-time
process ID to the GRI as a provisioning session ID.

Operation Stage (including Monitoring). This is the main operational stage of the provisioned on-demand composable
services. Monitoring is an important functionality of this stage to ensure service availability and secure operation, including
SLA enforcement.

Decommissioning Stage ensures that all sessions are terminated, data is cleaned up, and session security context is
recycled. The decommissioning stage can also provide information to or initiate service usage accounting.

Two additional (sub-)stages can be initiated from the Operation stage, based on the running composed service or
component services state:

Re-composition or Re-planning Stage should allow incremental infrastructure changes.

Recovery/Migration Stage can be initiated by the user or the provider. This process can use MD-SLC to initiate a full or
partial resource re-synchronisation, it may also require re-composition.

Implementation of the proposed SDF requires a special Service Lifecycle Metadata Repository (MD SLC as shown on Figure
2.3) to support consistent services lifecycle management. MD SLC keeps the services metadata that include at least service
state, service properties, and services configuration information.

Service Request/
(SLA Negotiation) .l

\L \
Composition/ h)
g T Reservation PO s Service
R \ (SLA enforcement) Lifecycle
| Re-Planning/ 1 - J Meta.data
! Re-Compo- ! / Service
|_ sition . ’: /./ ~\ (SL MD)
i FECTE >[Deployment]
/
, == - == >
/'_ _________ ~| Registr&Synchro
R Coo—- . (Security Bootstrap) Y
| Recovery/ ! \L i Provisiong !
I Migration : < | Session !
! !
- AT /! Operation , Managnt _;
Trmimimimes (Monitoring) <o >
(SLA enforcement)) \ /
! ‘
Decommissioning Ll

(Security Recycling) [<"77"

2.47?. GEYSERS Service Delivery Framework

General Security requirements for On-demand
Infrastructure Services Provisioning

General Requirements to Security Services and Authorization

Authentication Infrastructure

Providing consistent security services in GEYSERS architecture is of primary importance due to potentially multi-provider
and multi-tenant nature of virtual infrastructures provisioned on-demand. The GEYSERS security architecture should
address two aspects of the VI operation and dynamic security services provisioning:

e Provide security infrastructure for secure VI operation, including access control and SLA and policy enforcement for
all interacting roles and components in VI and VIP/VIO, secure messaging and transport services.

e Provisioning dynamic security services, including creation and management of the dynamic security associations, as a
part of the provisioned complex/composite services or virtual infrastructures.

The first task is a traditional task in security engineering, while dynamic provisioning of managed security services remains
a problem and requires additional research.

The Security Services Lifecycle Management (SSLM) as an important issue on building consistent security services for
dynamically provisioned virtual infrastructures is discussed below [ssIm]. The SSLM extends the described above Geysers
SDF service lifecycle management model and workflow with additional sub-stages and functions to bind dynamic security
context to the general provisioning session and Cloud virtualisation and hosting platform in such a way that to ensure all
operations on the virtual infrastructure and user data to be secured during their whole lifecycle.

The Geysers-Security Infrastructure (GSl) should provide the following basic infrastructure security services to ensure
normal operation of the virtual infrastructure:

* Access control (e.g. Authentication, Authorization, Identity Management)

* Policy and SLA enforcement

* Trust management (including interdomain and inter-provider and dynamic security associations)
* Data, messaging and communication security

e Additionally, auditing/logging and accounting.

As a part of provisioned VI, the security solutions and supporting infrastructure should address the following problems,
mostly related to data integrity and data processing security:

* Secure data transfer that should be enforced with data activation mechanism
* Protection of data stored on the virtualisation platform

* Restore from the process failure that entails problems related to secure job/application session and data
restoration.

Initial suggestions to address those problems are based on the secure provisioning and application/job session
management:

* Special session for data transfer that should also support data partitioning and run-time activation and
synchronization.

* Secure job/session fail-over that should rely on the session synchronization mechanism when restoring the session.
* Session synchronization mechanisms that should protect the integrity of the remote run-time environment.

The following problems/challenges arise from the GEYSERS provisioning environment analysis for security
services/infrastructure design:

e Data protection both stored and “on-wire” that include beside necessary confidentiality, integrity, access control
services, also data lifecycle management and synchronization.

e Access control infrastructure virtualisation and dynamic provisioning, including dynamic/automated policy
composition or generation.

e Security services lifecycle management, in particular related services metadata and properties, binding to main
services.

e Security sessions and related security context management during the whole security services lifecycle, including
binding security context to the provisioning session and virtualisation platform.

e Dynamic security associations (DSA) and trust/key management, including trust anchor bootstrapping during
deployment stage, what should provide fully verifiable chain of trust from the user client/platform to the service/data
runtime environment.

e SLA management, including initial SLA negotiation and further SLA enforcement at the planning and operation stages.

Initial suggestions to address those problems require the consistent secure provisioning and application sessions
management, in particular:

Special session for data transfer that should also support data partitioning and run-time activation and synchronization.
Session synchronization mechanisms that should protect the integrity of the remote run-time environment.

Secure session fail-over that should rely on the session synchronization mechanism when restoring the session.
Standardized interfaces that will answer some of user concerns on cloud security.

Successful GEYSERS architecture adoption by industry and its integration with advanced infrastructure services will require
implementing manageable security services and mechanisms for the remote control of the provisioned infrastructure
operational environment integrity by users.

GYESERS-Security should implement multi-layer security services including transport, messaging and application/data
security, and additionally network layer security for distributed VPN based enterprise domains. Security and security
services in the GEYSERS architecture design are applied at different layers and can be called from different functional
components using standard/common security services interface. Security services are governed by related security
policies.

Security services can be designed as: pluggable services operating at the messaging layer; OSGi bundles that can be
dynamically added as composable services to other composable services to form an instant virtual infrastructure; or
exposed as Web services and be integrated with other services by means of higher level workflow management systems.

Existing Security Frameworks and Platforms

Role Based Access Control

Although RBAC is technically a form of non-discretionary access control, it is often considered as one of the three primary
access control policies (the others are DAC and MAC). In RBAC, access decisions are based on the roles that individual users
have as part of an organization. Users take on assigned roles (such as professor, student, operator, or manager). Access
rights are grouped by role name, and the use of resources is restricted to individuals authorized to assume the associated
role. The use of roles to control access can be an effective means for developing and enforcing enterprise-specific security
policies and for streamlining the security management process.

Under RBAC, users are granted membership into roles based on their competencies and responsibilities in the organization.
The operations that a user is permitted to perform are based on the user's role. User membership into roles can be revoked
easily and new memberships established as job assignments dictate. Role associations can be established when new
operations are instituted, and old operations can be deleted as organizational functions change and evolve. This simplifies
the administration and management of privileges; roles can be updated without updating the privileges for every user on
an individual basis.

Generic RBAC model [15, 16, 17] provides an industry recognised solution for effective user roles/privileges management
and policy based access control. It extends Discretional Access Control (DAC) and Mandatory Access Control (MAC) models
with more flexible access control policy management adoptable for typical hierarchical roles and responsibilities
management in organisations, but at the same time it suggest a full user access control management from user assignment
to granting permissions. This can be suitable for internal organisational environment and particularly for human access
rights management but reveals problems when applied to distributed service-oriented environment.

Sandhu in his two research papers [15, 16] describes 4 basic RBAC models:
e Core RBAC (RBACO) that associates Users with Roles (U-R) and Roles with Permissions (R-P);
e Hierarchical RBAC (RBA1) that adds hierarchy to roles definition;
e Constrained RBAC (RBAC2) that extends RBACO with the constrains applied to U-R and R-P assignment;
e Consolidated RBAC (RBAC3) that adds role hierarchy to RBAC2.

RBAC is described in the ANSI INCITS 359-2004 standard [9] that partly re-defined the first three basic RBAC models in the
context of static or dynamic separation of duties (SSD vs DSD). In both models, initial Sandhu’s and ANSI RBAC, there is a
notion of the user session which is invoked by a user and provides instant session-based U-R association. Final result/stage
of the RBAC functionality are permissions assigned to the user based on static or dynamic U-R and R-P assignment. RBAC
doesn’t consider (user) permissions enforcement on the resource or access object. This functionality can be attributed to
other more service-oriented frameworks such as ISO/ITU X.811/X.812 Authentication/Authorization framework [18, 19]
or generic AAA Authorization framework [20, 21].

Generic AAA Authorization Framework

Authentication, authorization, and accounting (AAA) is a term used to refer to a framework for intelligently controlling
access to computer resources, enforcing policies, auditing usage, and providing the information necessary to bill for
services. These combined functions are considered important for effective network management and security.

The generic Authentication, Authorization, Accounting (AAA) architecture was proposed in RFC2903 [20] and generic AAA
Authorization framework (GAAA-AuthZ) is described in RFC2904 [21] as a development of the ITU-T X.812 Authorization
framework [19] for distributed multidomain systems.

Authentication (AuthN) and Authorization (AuthZ) are the components of the access control function to ensure that access
to a resource or service is granted to the access subject (human, service or process) that has right to use the resource and
perform those operation on the resource that it is allowed.

Authentication is the process of identifying a user or an access subject, based on identity credentials which examples are
username and password, digital certificates, one-time-tokens, etc. Authentication refers to the confirmation that a
user/subject who is requesting services is a valid user of the resources or services requested. Typically AuthN involves
comparing a user's authentication credentials with the user credentials stored in a user database (UserDB) or the
AuthN/AAA service, or checking validity of the user credentials obtained from the trusted AuthN service or trusted Identity
Provider.

Based on positive AuthN, a user must obtain authorization for doing certain tasks. Authorization is the process of granting
or denying a user access to network resources once the user has been authenticated. The amount of information and the
amount of services the user will be granted depends on the user's authorization level which is defined by the user attribute
credentials. In other words, Authorization is the process of enforcing policies: determining what types or qualities of
activities, resources, or services a user is permitted. Usually, authorization occurs within the context of authentication.
Authenticated user is provided with the attributes that are required for authorization decision.

Accounting is the process of keeping track of a user's activity while accessing the resources or services. Accounting is carried
out by logging of session statistics and usage information and used for trend analysis, capacity planning, billing, auditing
and cost allocation.

In modern Service Oriented Architecture (SOA) applications a Resource or a Service are protected by the site access control
system that relies on both AuthN of the user and/or request message and AuthZ that applies access control policies against
the service request. It is essential in a service-oriented model that AuthN credentials are presented as a security context
in the AuthZ request and that they can be evaluated by calling back to the AuthN service and/or Attribute Authority
(AttrAuth). This also allows for loose coupling of services in distributed hierarchical access control infrastructure.

The GAAA-AuthZ model is illustrated on Figure 4.1 and includes such major functional components as: Policy Enforcement
Point (PEP), Policy Decision Point (PDP), Policy Authority Point (PAP). It is naturally integrated with the RBAC separated
User-Role and Role-Privilege management model that can be defined and supported by separate policies.

The Requestor requests a service by sending a service request ServReq to the Resource’s PEP providing as much (or as
little) information about the Subject/Requestor, Resource, Action as it decides necessary according to the implemented
authorization model and (should be known) service access control policies.

In a simple scenario, the PEP sends the decision request to the (designated) PDP and after receiving a positive PDP decision
relays a service request to the Resource. The PDP identifies the applicable policy or policy set and retrieves them from the
Policy Authority, collects the required context information and evaluates the request against the policy.

In order to optimise performance of the distributed access control infrastructure, the Authorization service may also issue
AuthZ assertion in the form of AuthzTicket that confirm access rights. They are based on a positive decision from the
Authorization system and can be used to grant access to subsequent similar requests that match an AuthzTicket. To be
consistent, AuthzTicket must preserve the full context of the authorization decision, including the AuthN context/assertion
and policy reference.

Attribute 1dP PDP Policy
Authority | = | (Used DB) < Authority
A
R v
User AuthN i UserCreds - _i pEp | iPermOper; Resource
(User Client) [=——> (Operation/
Action)
- — PPPE 4
~_‘~~ ,,t —‘—___
\‘\-__EAuchSessionT JUPPtLian
1(AuthZ Assert)+~~

Figure 4.1. Generic Authentication and Authorization services interaction.

Generic AAA Authorization Framework defines three basic operational models that describe interaction (in sense of
request/response sequences) between a user, a service or resource provider and AAA Authorization service acting as an
Authority:

The push authorization sequence. Within the push (or token-) sequence, the User first requests an authorization from a
trusted Authorization service that may or may not honor the User’s request. It then may issue and return some kind of
Authorization assertion (a secured ticket or token) that acts as a proof of right or as asserted list of requestor capabilities.
Typically such an assertion has an associated validity time window. The assertion may subsequently be used by the User
to request a specific service by contacting the Resource. The Resource will accept or reject the authorization assertion and
will report this back to the requesting Subject. The Resource must have been provisioned with the appropriate key material
to recognize the appropriate assertions.

The pull authorization sequence. Within the pull (or outsource-) sequence, the User will contact the Resource with a
request. Before admitting the service request, the Resource must contact its Authorization service. The Authorization
service will evaluate the request against a specific authorization policy and will return an authorization decision. The
Resource will subsequently grant or deny the service to the User by returning a result message. The Resource, which
enforces a policy, effectively out-sources a policy decision.

The agent authorization sequence. Using the agent (or provision-) sequence, the User will contact an Agent, which will
handle the User’s request for the particular Resource. The Agent is trusted both by the User and the Resource. The Agent
will make an authorization decision and, using its own or User-delegated credentials, it will contact the Resource to
provision the requested service. The Agent will provide the User with details on how to contact and use the Service.

The three basic authorization sequences described above are elementary abstractions of more complex real world
examples that normally combine the basic sequences. It may use various protocols and message formats to handle and
secure user credentials and requests.

Although more functions can be found in both an Authority and a Resource, an Authority typically acts as a Policy Decision
Point (PDP) and a resource incorporates a Policy Enforcement Point (PEP) which used to call for the policy decision to the
Authority and enforce already made decision. In the subsequent discussion we may use the term PDP and PEP to represent
functions inside the corresponding entities.

Dynamic Access Control Services in existing Cloud laaS platforms

Clouds technologies [6] are emerging as infrastructure services for provisioning computing and storage resources on-
demand in a simple and uniform way. However there is no well-defined architectural model for the Cloud Infrastructure a
Service (laaS) provisioning model despite its wide use among big Cloud providers such as Amazon, RackSpace, Google, and
others. Recent research based on the first wave of Cloud Computing implementation have revealed a number of security
issues both in actual services organisation and operational and business models [27, 28]. Current Clouds security model is
based on the assumption that the user/customer should trust the provider. This is governed by the general Service Level

Agreement (SLA) that defines mutual provider and user expectations and obligations for the whole provisioned services
but doesn’t allow dynamic Quality of Services (QoS) management in potentially changing resources availability due to
changing resources demand and utilisation in typically multi-user Cloud environment.

Although Cloud provider invested a lot into making their own infrastructure secure and complying existing security
management standards (e.g. Amazon Cloud recently achieved PCl compliance certification [29]), still the overall security
of the Cloud based applications and services will depend on two other factors: security services implementation in user
applications and binding between virtualised services and Cloud based virtualisation platform, that should also ensure
protection against malicious users and risks related to possible Denial of Service (DoS) attacks.

Practical Cloud usage within one provider infrastructure brings illusion about unlimited availability, “elasticity” and “perfect”
security, but in practice this is related only to limited range of services and with limited manageability. Currently

implemented and provided security are based on VPN and provide only simple access control services based on users

access over SSH channel. More advanced security services and fine grained access control cannot be achieved without

deeper integration with the Cloud virtualisation platform and incumbent security services, what in its own turn can be

achieved with open and well defined Cloud laa$S platform architecture.

More complex and community oriented use of Cloud infrastructure services will require developing new service
provisioning and security models that could allow creating complex project and group oriented infrastructures provisioned
on-demand and across multiple providers.

Amazon AWS Security

Regarding access control services for on-demand infrastructure, there are several existing works such as Amazon AWS
Identity and Access Management (IAM) for Amazon Cloud products [30], the Access Control Service in the Windows Azure
AppFabric [31].

The Amazon AWS IAM is the integration of an Identity Management System and an Access Control System. On reserving
an Amazon AWS product, each customer is assigned an AWS account. Operations on AWS products are binded to this
account. Amazon IAM provides a mechanism to create and manage multiple users binding to the customer’s AWS account.
Using rules and policies at IAM side and at AWS product side, the IAM could control users’ activities on AWS resources. To
guarantee security requirements on confidentiality and integrity, users have their own security credentials for accessing
AWS resources.

Although Amazon AWS IAM is suitable for Amazon AWS products in identity and access management, it’s still rigid in trust
establishment and not flexible for multi-security domains and multi-tenancies while there is only one provider role for
Amazon AWS products. Amazon plays as a PIP to provide individual virtualized resources such as EC2 or S3 and also a VIP
to integrate such virtualized resources together. The access control model in Amazon AWS IAM is not well supported for
complex organizations because it only manages users in groups and performs authorization based on assigned permissions
to groups. Many other features of Role-based Access Control model [17] are not present in Amazon AWS IAM.

Access Control Service for Windows Azure Cloud platform

Access Control Service for Windows Azure AppFabric [Azure] is one of middleware services for applications in Microsoft
Azure Platform as in Figure 4.3:

AppFabric Services

Service Bus

Access Control Caching Integration

Composite App

WF WCF

This service enables authorization decisions are separated from regular applications and their clients to delegate to an
external access control engine. It has many notice features such as federation identity in access control, supports multiple
credentials, flexible and light-weight developer friendly programming model. AppFrabric Access Control plays the role in

Figure 4.3 — Microsoft Azure AppFabric Services

Windows Azure Platform as the intermediate trust-party between user side and service side as below:

Data Application

Windows

Azure Platform

\ppFabric Access Contro

v/
...

Application or Users

Figure 4.3 — AppFabric Access Control for Microsoft Azure Platform (the figure from Microsoft Azure)

However, AppFabric Access Control (AC) has some limitations. Although it’s flexible to operate and provide access control
service in federated identity environment, AC is not support for complex on-demand provisioning services, in which the
composite service could be assembled parts from legacy services. And because of not supporting Service Lifecycle
Management, AC couldnot dynamically establish trust relationships between user-side and a provisioned resource at

service side. Hence, this solution also does not adapt access control requirements in GEYSERS.

Security Architecture

Multi-Layer Security Services

There are four main aspects what concern to security that the LICL must handle. First, there must be an access control over
the resources, both virtual and physical ones, and also at VI level; access control will be obtained via authentication and
authorization mechanisms. Secondly, the data has to be protected, implying that data traffic remains isolated between VI,
as well as, stored data is not accessible from others Vls, independently they are allocated over the same physical resource.
Third, security has to facilitate policy enforcement, assuring that VI usage does not affect on the performance of other Vls.
These two last aspects relate to the isolation capability between VRs. Finally, LICL has to provide security on the service
provisioning process as well.

Security is considered a cross-layer functionality as it affects components from different layers, like virtual infrastructures,
or physical resources.

Authentication and Authorization Infrastructure

Developing a consistent framework for dynamically provisioned security services requires deep analysis of all underlying
processes and interactions. Many processes typically used in traditional security services infrastructures need to be
abstracted, decomposed and formalized. First of all, it is related to the security services setup, configuration and security
context management that in many present solutions/frameworks is provided manually, during the service installation or
configured out-of-band.

The general security framework for on-demand provisioned infrastructure services should address two general aspects
[32]: (1) supporting an access control architecture for multi-providers to provide on-demand provisioning services, and (2)
provisioning a Dynamic Access Control Infrastructure (DACI) as part of the provisioning on-demand virtual infrastructure.
The first task primarily focuses on the access control solution supporting on-demand provisioning resources with security
contexts synchronizationand management over multi-domains. The DACI must be bootstrapped to the provisioned on-
demand VI and VIP/VIO trust domains as entities participating in the handling initial request for VI and legally and securely
bound to the VI users. Such security bootstrapping can be done at the deployment stage.

Virtual access control infrastructure setup and operation is based on the mentioned DSA that links the VI dynamic trust
anchor(s) with the main actors and/or entities participating in the VI provisioning — VIP and the requestor or target user
organisation (if they are different). As discussed above, the creation of such DSA for the given VI can be done during the
reservation and deployment stages. Reservation stage allows to distribute the initial provisioning session context and
collects the security context (e.g. public key certificates) from all participating infrastructure components. The deployment
stage can securely distribute either shared cryptographic keys or another type of security credentials that will allow
validating information exchange and apply access control to VI users, actors, services.

Figure 5.1 illustrates in details interactions between main actors and access control services during the reservation stage
and also includes other stages of provisioned infrastructure lifecycles. The request to create VI (RequestVl) initiates a
request to VIP that will be authorized by VIP-AAI against its regular access control policies, what next will be followed by
VIP requests to PIPs for required or selected physical resources PR’s, which in its own turn will be authorized by PIP-AAls.
The SDF and SSLM requirements show that the initial RequestVI all as well as communication and access control
evaluations should be bound to the provisioning session identifier GRI. The chain of requests from the User to VIO, VIP and
PIP can also carry corresponding trust anchors TAO...TA2, e.g. in a form of public key certificate (PKC) [33] or WS-Trust
security tokens [34].

DAClI is initialized at the deployment stage to controls accesses and activities on the VI resources. The DACI bootstrapping
can be done either by fully pre-configuring trust relations between VIP-AAl and DACI or by using special bootstrapping

registration procedure similar to those used in TCPA [35], or use the dynamic trust establishment protocols for multi-
providers scenarios [67]

To ensure unambiguous session context and all involved entities and resources identification the following types of
identifiers are used:

e Global Reservation ID (GRI) — generated at the beginning of the VI provisioning, stored at VIO and returned to User as
identification of the provisioning session and the provisioned VI.

e VI-GRI — generated by VIP as an internal reservation sessions ID, which can be also re-folded GRI, depending on VIP
provisioning model.

e PR-LRI and VR-LRI — provide identification of the committed or created PR@PIP and VR@VIP.

| User/Applicant | |

VIO

| | VIP DACI/AAI | |

PIP(s)

||PI

P AAI

SLA Negotiation

VI/VR Request (TAO)

SLA Negotiation
Return GRI,

Generate
GRI

Plannm_gv VI reservation request
Reservation (including VIO TA1)
;Generate aVI-GRI
AuthZ request (VI-GRI)
Reserve VR reservation requgst (including VIP TA2)
complex AuthZ request (PR-LRI)
resource at
PIP(s) in
dalzy-cham Reservation copfirmation with
mode or PR-LRI of cominitted PR
concurrent
mode
Mapping from the returfed
. . PR-LRI to VR-LRI for V)P
VI reservation response with a
VI-GRI and set of VR-LRI(s)
VI deployment/activation . -
Deployment, request DACS,:TE:‘S“me
Activation stage
Elepp"’yvvﬁs. at Deploy VRs at the PIP (PR-LRIs)
VI/VR Configuration, h (S) n dalsy- _______ -
DACI configuration chain moce or ! PR |
and Security context concurrent mode VR deployment response r |
distribution
VI deployment notification VI deployment notification : VR : : DACS :
Operation Acpess VR(VR-LRI)
Authz request (VR-LRI)
VI/VR Management, Authz rg¢sponse
Monitoring, DACI [
operation and Access VR(PR-LRI)
Access PR

security context
management

Decommissioning

VI/VR teardown,
resources release,
security context
recycling

Decomission VI notification

Decomission VI (VI-GRI)

AuthZ request (VI-GRI)

For each PIP
providing VRs of
the VI

Decommision V|

Rs at the PIP (PR-LRIs)

Decomission VR notification

Decomission VI notification

Decomission DACS (VI-GRI)

W

Figure 5.1: Dynamic Access Control Infrastructure during VI Provisioning and Operation

Security Services Lifecycle Management Model

Most of the existing security lifecycle management frameworks, such as defined in the NIST Special Publication 800-14
“Generally Accepted Principles and Practices in Systems Security” [36], provide a good basis for security services
development and management, but they still reflect the traditional approach to services and systems design driven by
engineers force. The defined security services lifecycle includes the following typical phases: |Initiation,
Development/Acquisition, Implementation, Operation/Maintenance, and Disposal.

Figure 5.2 (b) illustrates the proposed Security Services Lifecycle Management (SSLM) model [37] that reflects security
services operation in generically distributed multidomain environment and their binding to the provisioned services and/or
infrastructure. The SSLM includes the following stages:

* Service Request and generation of the GRI that will serve as a provisioning session identifier (SessionID)
and will bind all other stages and related security context. The Request stage may also include SLA
negotiation which will become a part of the binding agreement to start on-demand service provisioning.

* Reservation stage and Reservation session binding that provides support for complex reservation
process including required access control and policy enforcement.

* Deployment stage begins after all component resources have been reserved and includes distribution
of the security context and binding the reserved resources or services to the Global Reservation ID (GRI)
as a common provisioning session ID.

* Registration&Synchronisation stage (that however can be considered as optional) that specifically
targets possible scenarios with the provisioned services migration or failover. In a simple case, the
Registration stage binds the local resource or hosting platform run-time process ID to the GRI as a
provisioning session ID.

* During Operation stage the security services provide access control to the provisioned services and
maintain the service access or usage session.

* Decommissioning stage ensures that all sessions are terminated, data are cleaned up and session
security context is recycled.

The proposed SSLM model extends the existing SLM frameworks and earlier proposed by authors the GAAA-
NRP model [26] with the new stage “Registration & Synchronisation” that specifically targets such security
issues as the provisioned services/resources restoration (in the framework of the active provisioning session)
and provide a mechanism for remote data protection by binding them to the session context.

a) Service Lifecycle

Service Planning Operation Decom-
Request Design Deployment Monitorin missioning
(GRI) Reservation

b) Security Service Lifecycle

Depl ;
SecServ Resrv' °p oy' Reqistr Operation Decommis
Session Rtm Bind .
Request R Synchron Monitorin Key Recycl
Binding Bootstr

Figure 5.2: The proposed Security Services Lifecycle Management model.

Table A explains what main processes/actions take place during the different SLM/SSLM stages and what
general and security mechanisms are used:
* SLA - used at the stage of the service Request placing and can also include SLA negotiation process.

* Workflow is typically used at the Operation stage as service Orchestration mechanism and can be
originated from the design/reservation stage.

* Metadata are created and used during the whole service lifecycle and together with security services
actually ensure the integrity of the SLM/SSLM.

* Dynamic security associations support the integrity of the provisioned resources and are bound to the
security sessions.

¢ Authorization session context supports integrity of the authorization sessions during Reservation,
Deployment and Operation stages.

* Logging can be actually used at each stage and essentially important during the last 2 stages — Operation
and Decommissioning.

Table 5.1. Relation between SSLM/SLM stages and supporting general and security mechanisms

SLM Request Design/Reserv. Deployment Operation Decomissioning
stages Development
Process/ SLA Service/ Resource | Composition Orchestration/ Logoff Accounting
Activity Negotiation Composition) . Session
Configuration
Reservation Management
Mechanisms/Methods
SLA M M
Workflow @) M
Service M M M
Lifecycle
Metadata
Dynamic O M M
Security
Associatn
Authz M o M
Session
Context
Logging @) O] M M
Legend:

M — Mandatory; O - Optional

Security context management in VI resources provisioning

Session types and security context

VI authorization session in LICL is based on general SDF model that includes stages such as reservation, deployment,
access/operation, and decommission [38] as in Figure 5.. It is necessary to enforce access control policies at the beginning
of each step.

Access Control

Policies
PN
P N
_ - - _ e | N
- — - / \\
- e / AN
- 7 ! ~
- - _ / N N
- -7 / ~
Lt~ e 4 RN
Reservation Deployment Access session Decommissioning
-l -l -l | -
Provisioning session
-t >

Figure 5.3: Virtual Infrastructure life cycle session stages

To achieve consistent security services in dynamically created virtualised resources and infrastructure in general, it is
required that resources lifecycle information/data should have sufficient security context information as described below.

From reservation stage each VI instance has a unique identifier value to distinguish among VIs through its life cycles. This
identifier value is called Global Reservation Identifier for VI (VI-GRI). VI-GRI should be generated at the beginning of
provisioning session at the VI request side (SML) or VI management side (upper-LICL layer). To correctly apply security
services, upper-LICL keeps VI related security information as the metadata in the “Service Lifecycle Metadata Repository”.
This metadata is called “VI security context”.

Lower-LICL layers are implemented at PIPs for VR abstraction and management. Each VR object is identified by a unique
Local Reservation Identifier (VR-LRI) which is generated at the VR reservation stage. Similar to upper-LICL, the lower-LICL
also need to keep VR related security information in the “Service Lifecycle Metadata Repository” as the “VR security

context”.
The general security context must contain following information:

e Session identifier: this is the unique value for identification. It could be get the value or derived from VI-GRI when
the context for VI or LRI when the context for VR.

e Session condition: set of conditions and obligations for the resource object (e.g.: validity time, conditions implied
by the previous policy decisions).

e Resource information or reference: contains a set of the resource attributes required for enforcing security policy.
For the VI, it could be set of VRs and their related attributes, including resource lifecycle stage. For the VR, it could
be VR attributes using to access a concrete PR at the PIP. Resource attributes included into the security context
object must be unambiguously linked to the full resource description, e.g. via GRI or LRI.

e KeyInfo: contains related information on cryptographic keys used for security operations. When the context for
VI, they could be sharing keys between VIO and VI. When the context for VR, it could contain cryptographic keys
for trust relations between VIO and the VR or between the VR with others.

Using Authorization tokens for security context management

Although DACI operates at the Operation stage, its security context is bound to the overall provisioning process starting
from SLA negotiation that will provide a trust anchor TAO to User/application security domain with which the DACI will
interact during the Operation stage. The RequestVI initiates the provisioning session inside of which we can also distinguish
two other types of sessions: reservation session and access session (the deployment session is used only for control and
management purposes in the services provisioning), which however can use that same access control policy and security
context management model and consequently can use the same format and type of the session credentials. In the
discussed DACI we re-use the AuthZ tokens (AuthzToken) mechanism initially proposed in the GAAA-NRP and used for
authorization session context management in multi-domain network resource provisioning [25, 26]. Tokens as session
credentials are abstract constructs that refer to the related session context stored in the provisioned resources or services.
The token should carry session identifier, in our case GRI or VI-GRI.

When requesting VI services or resources at the operation stage, the requestor need to include the reservation session
credentials together with the requested resource or service description which in its own turn should include or be bound
to the provisioned VI identifier in a form of GRI or VI-GRI. The DACI context handling service should provide resolution and
mapping between the provided identifiers and those maintained by the VIP and PIP, in our case VR-LRI or PR-LRI. If session
credentials are not sufficient, e.g. in case when delegation or conditional policy decision is required, all session context
information must be extracted from AuthzToken and the normalised policy decision request will be sent to the DACI Policy
Decision Point (PDP) which will evaluate the request against the applied access control policy.

In the discussed DACI architecture the tokens are used both for access control and signalling at different SSLM/SDF stages
as a flexible mechanism for communicating and signalling security context between administrative and security domains
(that may represent PIP or individual physical resources). Inherited from GAAA-NRP the DACI uses two types of tokens:

e Access tokens that are used as AuthZ/access session credentials and refer to the stored reservation context.

e Pilot tokens that provide flexible functionality for managing the AuthZ session during the Reservation stage and
the whole provisioning process.

Figure 5.4 illustrates the common data model of both access token and pilot token. Although the tokens share a common
data-model, they are different in the operational model and in the way they are generated and processed. When processed
by the AuthZ service components they can be distinguished by the token type attribute which is optional for access token
and mandatory for pilot token.

............

|

|

|

| [orem]
=
| i

AuthzToken [}

Figure 5.4. Common access and pilot token datamodel.

Access tokens contain three mandatory elements: the Sessionld attribute that holds the GRI; the Tokenld attribute that
holds a unique token ID attribute and is used for token identification and authentication; and the TokenValue element.

The optional elements include: the Condition element that may contain two time validity attributes notBefore and

notOnOrAfter; the Decision element that holds two attributes Resourceld and Result; and optional element Obligations

that may hold policy obligations returned by the PDP. Pilot token may contain another optional Domains element that

serves as a container for collecting and distributing domain related security context.

For the purpose of authenticating token origin, the pilot token value is calculated of the concatenated strings “Domainld,

GRI, Tokenld”. This approach provides a simple protection mechanism against pilot token duplication or replay during the

same reservation/authorization session. The following expressions are used to calculate the TokenValue for the access
token and pilot token:

TokenValue

HMAC (concat (DomainId, GRI, TokenId), TokenKey)

AAl Components

The GEYSERS AAIl Authentication and Authorization Servers have following components:

e Authentication and Identity Management Service: this server provides authentication service,issues
and verifies attribute statements binding to authenticated subjects using SAML profile [39]

e Authorization Service: provides the authorization service compliant with SAML-XACML profile [40]

e Token

Validation Service:

AuthN interface

(issue SAML assertions)

performs

token

AuthZ interface

verifications

on

AuthzZ tokens

Verify security tokens
(AuthN token, AuthZ

Identity Management Server

Authorization Server

(XACMLAuthz-DecisionQuery/Response) token)
TVS
Authentication Authority SAML-XACML (Token V?"dat'on
Request/Responder Service)
PIP Obligation
Attribute A&Z“,‘f' || (AuthZ Context Handler) Handler Authz
session
Attribute DB Authorlty s cache
(e.g: Shibboleth) UG- XACML- PAP
Response PDP PolicyQuery
(Policy Administration Token Validation Server
(Policy Decision Point) [XACMLPolicy-| .
Response Point)

Figure 6-1 Authentication and Authorization Infrastructure components

Identity Management Service

The Identity Management Service has two tasks:

e Authentication: authenticates subjects based on their submitted credentials. There are several
credential types, such as: username/password, X.509 certificates.

e Issue authentication tokens (authn-token): the Identity Management Server may issue an authn-token
to the authenticated subject. The authn-token could be a standard token: SAML authentication
assertions [SAML2] or Keberos tickets. The issuer identifier of these token is the Identity Management
Server.

The authn-token could also be verified at for their lifetime and content validities

The ldentity Management Server could be utilized from existing Authentication Authority and Attribute
Authority such as Shibboleth [41].

Authorization Service

Authorization Service is built upon the pluggable GAAA-TK library [25] which follows the generic Authentication,
Authorization and Accounting (AAA) framework (GAAA-AuthZ) [21]. The purpose of Authorization Service is to
grant or deny actions under an authenticated subject . The authorization policies are composed using XACML
standard [39].

The authorization interface is in compliance with SAML profile of XACML [40] in which authorization requests
and responses are XACMLAuthzDecisionQuery and XACMLAuthzDecisionResponse.

The Authorization Server may issue “XACMLAuthzDecision Assertion” as the authorization token for a request
from PEP. The content and usage recommendations of XACMLAuthzDecision Assertion are specified in [40].

WSDL AuthZ protocol

(SOAP)
(XACMLAuthzDecisionQuery
/Response)
SAML-XACML
Request/Responder
EXternal SAML: AttributeQuery
Attribute PIP Obligation
Authority SAML: AtiributeResponse | | (AuthZ Context Handler) Handler
PDP poliyQuery PAP
(Policy Administration
(Policy Decision Point) | XACMLPolicy- .
Response P0|nt)
Authorization Server

Figure 6-2: Authorization server

Components in the Authorization Servers have the following functionalities:

e SAML-XACML Request/Responder: handles SAML messages carrying XAML authorization requests and
responses.

e Policy Information Point (PIP): collect necessary attributes that provides to PDP for authorization policy
evaluations

e Policy Decision Point (PDP): evaluate authorization requests against set of XACML policies provided by
PAP.

e Policy Administration Point (PAP): provide policies to the PDP using SAML protocol in carrying policy
requests and policy responses.

Token Validation Service

The aim of Token Validation Server is to issue and validate authorization tokens to improve decision
performance of the authorization service.

The Security Gateway library

The security gateway is the auxiliary library facilitating the usages of Authentication, Authorization and Token
servicesservices.

e CSSI/GAAAPI: The client server application utilizes Security Gateway through the CSSI interface for invoking
authentication service

e PEP is in charge of communicating with “Authorization Server” to get authorization decisions by using “SAM-
XACML Request/Responder”.

e SAM-XACML Request/Responder: the component to handle XACML authorization requests from PEP to the SAML
protocol [SAM- XACML2] before sending them to the “Authorization Server”.

Security Gateway

CSSI/GAAAPI

PEP
(Policy Enforcement Point)

SAML-XACML Request/Responder

Figure 6-3: Security Gateway library for AAI

AAIl Interfaces

This part describes external interfaces of AAl components used to interact with other applications.

[Client J [Server J
CSSI H ﬁcs&

SecurityGateway library

Token
Validation

Figure 6-4: Interaction with AAl components through interfaces

Following table summarises interfaces and their messages

Table 6.1 — AAl interfaces and messages

AuthN SecurityGateway | SAML protocol over SOAP | In/out Authenticate a subject based on submitted
<> AAl Server credential and return authn-token.
Authz SecurityGateway | SAML-XACML protocol | In/out Provide decisions for authorization requests.

<> AAl Server | over SOAP

Token SecurityGateway | SOAP In/out Validate authentication tokens and

Validation | €= AAI Server authorization tokens.

CSSI Client/ Server Authenticate(authn- In/out Authenticate with a Identity Management
> credentials) Server and return authn-token.

SecurityGateway

AuthorizeAction(request) | In/out Authorize a request with the AuthZ/AAl server.

7 Common Security Services Interface (CSSI)

7.1 General CSSI functional structure

WS-Security standard, as native to SOA and ESB [7, 8], provides necessary security mechanisms and interface for virtualised
resources interconnection, but their practical use in multi-domain/inter-domain virtualised environment will complicated
with necessary trust relations and namespaces configuration at each communicated entity. To simplify this problem for
the dynamically provisioned virtualised security services, at the level security related interfaces configuration and
information management, the CSSI has been proposed. Technically CSSI combines the core functionality of the GSS-API

[42] for authentication service, GAAA-NRP authorization and session/token management [25]. The CSSI can be used
together with WS-Security but introduces a simplified CSSI request format and SOAP security header structure that used a
common SecurityContext container with the following structure:

SecurityContext (AuthenticationData, AuthorizationData, SessionData, SecurityData)

This will allow more flexibility in defining actual security data format and semantic that will exchanged between the
virtualised services and the provider services, which due to their dynamicity will have high variation of the structure and
semantics. CSSI and DACI will be configured together with provisioned VI at the deployment stage.

GEYSERS security services can be called from all other services to implement/add basic security services such as (1) data
protection, (2) access control (authentication, authorization, delegation or identity mapping), and (3) policy enforcement.
It should be noted that the security services discussed here are related to securing GEYSERS services and applications
interaction and may be positioned as application layer security services according to X.800/1S07498 Open Systems Security
Architecture [18, 19]. GEYSERS security infrastructure may use other layer security services and mechanisms to protect
communication channels such as VPN/IPSec, HTTPS, but these services can be implemented using existing standard
libraries and are not the scope of the GEYSERS security design.

GEYSERS CSSI implements the following interface components:

e Standard Generic Security Services Application Programming Interface (GSS-API) [42] that supports data and/or
message encryption/decryption, signature, authentication and delegation.

e Generic Authentication and Authorization APl (GAAAPI) that supports basic authentication and extended
authorization functionality for complex multi-domain resource provisioning [GAAA-NRP, IETF-RFC2904] that
requires inter-domain provisioning and authorization sessions management and supports the whole provisioned
services lifecycle. The basic GAAAPI functionality is implemented in the GAAA Toolkit (GAAA-TK) pluggable Java
Library that will be extended with additional functions for combined network and IT resources provisioning.

e Simple Policy Based Management interface that supports policy based processes and objects management. These
types of functions are called out from the Control and Management System that executes an object or runs a
process during its execution.

The messages to request CSSI functions are described in the following table:

Table 7.1: CSSI functions and messages

Functionality Message Direction Description
Data Encryption Encrypt (data) Service or | Enrypts and decrypts data in a form of binary
Application data or XML document.

Decrypt (cipher data)
<> Encryptor Protects data confidentiality.

Encrypt and Wrap (data) Service or | Encrypts data and enclose them in a standard
Application container/envelop, e.g., XMLEncryption.
<> Encryptor

Data Signing Sign (data) Application Signs data and validates signature where
<> Signer data can be in a form of binary data or XML

Validate (signed data, signature) document

Protects data integrity.

Wrap and Sign (data) Application Wraps data into standard container, signs
. . . . <> Signer and attach signature.
Validate (container with signed & g
data) Protects data integrity.
Authentication Authenticate (ID, credentials) Application Request to retrieve monitoring information
and Delegation <> AuthN | about the status of a physical resource.
Service . -,
Issues AuthN token that confirms positive
authentication.
Delegate (AuthenticatedEntityID, | Application Allows delegation or mapping of the
AuthN assertion, newID) <> Identity | authenticated entity.
Manager . - .
& Allows mapping between entities and roles in
different domains.
AuthorizeAction (subject, | Application Performs authorization of the request to do
resource, action) <> AuthZ | action or the resource for the subject.
Service . . .
May issue AuthZ ticket issued as an
authorization credential/assertion.
AuthorizeActionSession (subject, | Application Performs authorization of the request to do
resource, action, SessionID) <> AuthZ | action or the resource for the subject and
Service binds AuthZ context to the SessionlID.
Authorization May return AuthZ ticket issued as an
authorization credential/assertion.
Pilot token is issued as a session credential.
AuthoriseActionObligated Application Allows conditional AuthZ decision.
(subject, resource, action) <> AuthZ | Additionally may return a set of conditions or
Service Obligations that shall be enforced either by
the resource or next domain in case of
multiple or multidomain resources access.
AuthoriseObject (object, | Object/Process | Allows policy based process/object
resource, policy) > management or tasks execution.
Ctrl&Mngnt
Policy Based Service
Management or
Tasks Execution AuthoriseObjectObligated Object/Process | Extends policy based process/object
(object, resource, policy) PEEN management with obligated/conditional
Ctrl&Mngnt decision.
Service

Detail descriptions of Authentication and Delegation interface, Authorization interface are provided in subsequent sections.

7.2 Authentication and Delegation Interface

Application CSSI service

Authentication request

Authentication response

Figure 7-1 — Authentication sequence diagram

Msg Abstract message Message direction

no.

1 Authentication Request Application = CSSI service
2 Authentication Response CSSI service > Application
3 Delegation Request Application > CSSl service
4 Delegation Response CSSl service = Application

Message — Authentication request

Elements Multiplicity Description Element Type
Message_Type 1 Type of the message Integer
Credential_type 1 Type of credential to authenticate Integer

Credential data, it could be
UsernameCredential element for
Credential 1 usename/password authentication or the Credential
existing authentication token in the
AuthenticationTokenCredential element.

Element — UsernameCredential

Sub-elements Multiplicity Description Element Type

Username 1 Username of the subject to authenticate String

Type of password. It could be the default
Password_Type 1 PasswordText(0) or PasswordDigest(1) which | Integer
using nonce value in digest.

Password information which related to the .
Password_Value 1 String
password_type, e.g: hash of the password

The cryptographic random nonce using for

N 0.1 . .
once password. The encoding type is Base64

String

Element — AuthenticationTokenCredential

Sub-elements Multiplicity Description Element Type

Base64Encoding 1 The base64 encoding of XML credential String

Message — Authentication response

Elements Multiplicity Description Element Type

Authentication status 1 Authentication status: AUTHENTICATED (0) Integer
= or UNAUTHENTICATED (1) g
If the Authentication_Status is
Authentication_Token 0.1 AUTHENTICATED, this field contains String
authentication token in Base64 encoding.

7.3 Authorization Interface

Application CSSI service

Authorization request

Authorization response

Figure 7-2 — Authorization sequence diagram

Msg Abstract message Message direction

no.

1 Authorization Request Application = CSSI service
2 Authorization Response CSSl service 2 Application

Message — Authorization request

Elements Multiplicity Description Element Type

Message_Type 1 Type of the message Integer

. The authorization session Id to specify which .
SessionlID 1 L . String
authorization service to request

Subject 1

The subject to authorize

AttributeList

authorization

Resource 1 The resource to authorize AttributeList

Action 1 The action perform on the resource AttributeList
. The environment information for . .

Environment 1 AttributelList

Element — AttributelList

Sub-elements Multiplicity Description Element Type
NumberOfAttribute 1 The number of attribute in the list Integer
Attribute 1l.n The attribute in the list Attribute

Element - Attribute

Sub-elements Description Element Type
ID 1 The identifier of the attribute value String
Value 1 The value of the attribute String

Message — Authorization response

Elements Multiplicity Description Element Type
Status 1 Contains one of following value: Integer
AUTHORIZED (0) or UNAUTHORIZED (1) &
Token 0.1 Contains returned authentication token if Strin
. the result is AUTHORIZED &

7.4

Workflows to support authentication and authorization for NIPS server could be in Pull model (Figure 7-3) or in Push model

(Figure 7-4).

Authentication and Authorization for NIPS client-server

Client

Request

Service/
Resource

notAuthenticated

Identity

AuthN request

Management
Server

AuthN token response

notAuthorized

Autho
XACMLA

fization request:
uthzDecisionQuery

Authorization
Server

XACMLAuthzIl
(XACMLAUthz

DecisionResponse:
Decision assertion)

Setup response (incl.
Authz token)

Session
establishment

Processing

Figure 7-3: Sequence diagram of Authentication and Authorization in Pull model

Identity

Client Management Service/ Authorization
Server TVS Server
Resource

AuthN request

AuthN token response

Setup request

Validate AuthN
token

notAuthgnticated]
Authorizatjon request:
XACMLAuthzDecisionQuery
XACMLAuthzDecisionResponse:
(XACMLAuthzDecisiop assertion) — AuthZ token
notAuthorized

Session
establishnpent

Processing
Setup resporjse (incl.

Authz token)

Figure 7-4: Sequence diagram of Authentication and Authorization for NIPS-UNI in Push model

After receiving the NIPS response including the AuthZ token, in subsequent messages, the NIPS client could utilize this
token to get advantage of performance (Figure 7-5).

NIPS

NIPS client server VS

Request

Validate AuthZ token

Authz validation

respose
notAuthenticated/
notAuthorized
NIPS
processing

NIPS response

Figure 7-5: Sequence diagram for NIPS client-server using AuthZ token

AAIl Request and Response Formats

The AAI Authorization and Authentication protocol will use SAML protocol as a basic and in particular SAML2-XACML2
protocol that incapsulate XACML Request/Response messages. However it will be extended with the possibility to carry on
authorization tokens. Details will be worked out at the design and implementation stage.

GEYSERS Access Control Use Cases

According to use-cases at different layers SML, NCP+ and LICL, the AAIl needs to fulfil following access control
use-cases:

e Access Control Use Cases at NCP+ : which is the interaction between the VIO-IT at SML and the VIO-N
at NCP+

e Access Control Use Cases at Upper-LICL: which are the interactions between the VIO (at SML and NCP+)
and the VIP at upper-LICL.

e Access Control Use Cases at Lower-LICL (PIP): These use-cases illustrate interactions between the VIP
and the PIP.
Access Control Use Cases at NCP+ (VIO-N)

The SML, under the context of the VIO-IT, could interact with NCP+ (the VIO-N) through the NIPS-UNI interface.
Access control use-cases at this interface are as follow:

Table 8.1: Permissions for NIPS-UNI interface

1 VIO-IT IT- NIPS:Validate-IT- Validation of IT advertisements provided by the VIO-IT
Advertisement | Advertisement

2 VIO-IT Network- NIPS:Setup VIO-IT is allowed to request the setup of a new
Service network service between two end-points (they could
be declared in terms of IT capabilities)

3 VIO-IT Network- NIPS:Modify VIO-IT is allowed to request the modification of an
Service existing network service.

4 VIO-IT Network- NIPS:Request- VIO-IT is allowed to request the quotations for network
Service Quotation connectivity services between different end-points.

5 VIO-IT Network- NIPS:Delete VIO-ITis allowed to delete the network service
Service between to end-points

6 VIO-IT Monitoring- NIPS:Request- VIO-IT is allowed to request/receive monitoring info
Info Monitoring-Info

8.1.2 Access Control Use Cases at Upper-LICL (VIP)

The Upper-LICL, which is under context of the VIP, has external interfaces for other layers of other roles to
communicate with. They are SLI, CCl and NLI.

8.1.2.1 SlLlinterface

This interface is used by SML (VIO-IT) to invoke upper-LICL layer (VIP). Access control use-cases at this interface
are as summarized in the following table:

Table 8.2 : Permissions for SLI interface

1 VIO | VR-RP SLl:Instantiate-VR-IT A VIO is allowed to request VR instantiation:

2 VIO |VR SLI:Decommission-VR-IT A VIO is allowed to decommission a VR:

3 VIO | VR-RP-Info | SLI:Get-Available-VR-Pool-IT A VIO is allowed to get available resource for a
resource pool

4 vio |vr SLI:Operate-VR A V!O is allowed to operate/control on a particular
VR instance

5 VIO VR-State- SLi:‘Monitor-VR-Info A VIO is allowed to request the state of a

Info device/node

6 VIO VR-Power- SLI:Monitor-VR-Info AVIO |s.aIIowed to get device power consumption
Info of a device/node
7 VIO VR-Status- SLi‘Monitor-VR-Info A VIO is allowed to get status of a device/node
Info
8 VIO |VRinfo | SUi:Subscribe-VR-Monitoring | "+ VIO 18 allowedto subscribe monitoring
information of a device/node from VIP
) . L A VIO is allowed to remove monitoring
9 VIO | VR-Info SLI:Unsubscribe-VR-Monitoring subscription of a device/node from VIP
10 vio | vr SLI:Add-VirtualNetworklf 'AVIO is allowed to add new virtual network
interface.
11 vio |vr SLi:Remove-VirtualNetworkif AVIO is allowed to remove virtual network
interface
12 VIO |VR SLI:Create-Storagelmage A VIO is allowed to create a new storage image
13 vio | vr SLI:Remove-Storagelmage A VIO is allowed to remove a storage image from a
node/VR
14 VIP VR-RP-Info | SLI:Advertise-VR-Pool ,:o\glP is allowed to advertise available resource
VR-RP- VIP is allowed to notify instantiation request status
15 VIP Instantiatio | SLI:Notify-VR-Info to VIO
n-Status
VR-RP- VIP is allowed to notify a decommission request
16 VIP Decommissi | SLI:Notify-VR-Info status to VIO
on-Status
VR- VIP is allowed to notify a operation request status
17 VIP Operation- | SLI:Notify-VR-Info to VIO
Status
18 VIP VR-Info SLI:Notify-VR-Info x:gls allowed to notify a subscription update to

8.1.2.2 C(CClinterface

These are access control use-cases between the NCP+ and the upper-LICL:

Table 8.3: Permissions for CCl interface

1 VIO-N VNode-Info CCl:Synch-Request | VIO-N is allowed to request synchronize information of
virtual node at VIP (LICL)
2 VIO-N VNode CCl:Configure VIO-N is allowed to configure a cross-connection in the

virtual node at VIP (LICL)

3 VIO-N VNode- CCl:Monitor VIO-N is allowed to get monitoring information from
Monitor-Info the virtual node at VIP (LICL)

4 VIP VNode-Info CCl:Synch-Update | VIP (LICL) is allowed to update information about node

and its interfaces to VIO-N (NCP+)

5 VIP VNode- CCl:Notify VIP is allowed to notify about cross-connection
Operation-Info operation progress to VIO-N (NCP+)

6 VIP VNode-Status- | CCl:Notify VIP is allowed to notify about virtual node status to
Info VIO-N (NCP+)

8.1.2.3 MLl interface

These are access control use-cases between the SML and NCP+ to the upper-LICL:

Table 8.4: Permissions for MLI interface

1 vio | VI MLI:Request-VI A VIO is allowed to request a VI

2 VIO | VI-Request | MLI:Query-VI-Request-Status A VIO is allowed to query VI request status

3 VIO | VI-Request | MLI:Get-SLA-Offer A VIO is allowed to get SLA offer of sent VI request

4 VIO | Vi-Request | MLI:Sign-SLA-Offer A VIO is allowed to sign SLA Offer of sent VI
request

5 vio | vi MLL:Instantiate-Vi CIVIO is allowed to request the instantiation of its

6 vio v MLI:Decomission-Vl A YIO is allowed to request the decommissioning
of its VI.

7 vio | vraT MLI:ReplanningVI:Add-VR-IT Replanm.ng: Add IT node: The VIO asks to include a
new device on the VI
Replanning: Modify IT node: The VIO requests to

8 VIO | VR-IT MLI:ReplanningVI:Modify-VR-IT | modify some of the characteristics of an IT node
(+/- storage, +/- computing power)

. .) Replanning: Delete node: The VIO requests to
9 VIO | VR-IT MLI:ReplanningVl:Delete-VR-IT delete a device from the VI.
. . .) . Replanning: Add a network link: The VIO requests

10 VIO | VLink MLI:ReplanningVI:Add-VLink to add a new link between two devices on the VI

11 | VIO | VLink MLI:ReplanningVi:Modify-viink | RePianning: Modify link: The VIO requests to
modify the capacity of a link

12 vio | viink MLI:ReplanningVI:Delete-VLink Re.plannlng: Delete link: The VIO requests to delete
a link from the VI.

Replanning: Modify VI: The VIO requests to modify

13 vioO | VI MLI:ReplanningVI:Modify-Time the timeline of a VI (+/- time reserved).

8.1.3 Access Control Use Cases at Lower-LICL (PIP)

Lower-LICL at PIP provides two interfaces for VIP running Upper-LICL: ROS interface and VR Management
interface. It also has the PR Management Interface which the PR-Admin can use to manage physical resources
at PIP.

8.1.3.1 ROS Interface

Table 8.5: Permissions for ROS interface

1 PIP VR-Mon-Info | ROS:Notify-VR-Info PIP is allowed to send a VR monitoring (status
change) notification information to VIP through
ROS interface at Upper-LICL

2 PIP VR- ROS:Notify-VR-Operation PIP is allowed to send a VR operation execution
Operation- status notification information to VIP through ROS
Info interface at Upper-LICL

3 PIP RP- ROS:Notify-RP-Operation PIP is allowed to send a Resource Pool operation
Operation- execution status notification information to VIP
Info through ROS interface at Upper-LICL

4 PIP VR-Sync-Info | ROS:Notify-VR-Info PIP is allowed to send a VR information update

(configuration change) to VIP through ROS
interface at Upper-LICL

5 VIP VR-RP ROS:Instantiate-VR-IT A VIP is allowed to request the instantiation of its
VR-ITs: from VR resource pool to VR

6 VIP VR ROS:Decommission-VR-IT A VIP is allowed to request the decommissioning
of its VR-IT (from VR to VR IT resource pool)

7 VIP VR ROS:Configure-VR A VIP is allowed to send configuration commands
to its VRs.
8 VIP VR-RP ROS:Get-Available-VR-Pool-IT A VIP is allowed to get available IT resources for

the VR IT resource pool

9 VIP VR ROS:Monitor-VR-Info A VIP is allowed to request/receive monitoring
information from its VRs.

8.1.3.2 VR Management interface

Table 8.6: Permissions for VR Management interface

1 VIP Resource- Request-Resource-Kinds A VIP is allowed to request the Resource Kinds
Kinds-Info information of a PIP + the PIP inter-domain

connections' information.

2 VIP LR Request-VR A VIP is allowed to request a set of VR to the PIP

3 VIP LR Instantiate-VR A VIP is allowed to request the instantiation of its
VR: from LR to VR (with VR network), or from LR to
VR resource pool (with VR IT)

4 VIP VR Decommission-VR A VIP is allowed to request the decommissioning
of its VR. With VR-IT, from VR-resource pool to LR

8.1.3.3 PR Management Interface

Table 8.7: Permissions for PR Management interface

1 PIP-Admin | PR Add-PR PIP's Admin is allowed to add new PR to the PR
Management at Lower-LICL

2 PIP-Admin | PR Delete-PR PIP's Admin is allowed to remove an existing PR to the
PR Management at Lower-LICL

3 PIP-Admin | Link Add-Link PIP's Admin is allowed to add new link to the PR
Management at Lower-LICL

4 PIP-Admin | Link Delete-Link PIP's Admin is allowed to remove an existing link to the
PR Management at Lower-LICL

5 PIP-Admin | Domain Add-Domain PIP's Admin is allowed to add new domain to the PR
Management at Lower-LICL

6 PIP-Admin | Domain Delete-Domain PIP's Admin is allowed to remove an existing domain to
the PR Management at Lower-LICL

7 PIP-Admin | SLATemplate Add-SLA-Template | PIP's Admin is allowed to add an SLA
template Management at Lower-LICL

XACML Attribute Profile for GEYSERS

Resource profile

Attribute name

Attribute ID

Full XACML attributeld semantics

(e.g: ns-prefix =
http://geysers.eu/)

Notes

Resource
Identifier

resource-id

{ns-prefix}/{domain}/
resource/resource-id

Unique identifier of a
resource. This is the
value of VI-GRI, VR-LRI
or PR-LRI.

Resource Type

resource-type

{ns-
prefix}/{domain}/resource/resource-
type

Specify of

resource.

type

prefix}/{domain}/resource/resource-
domain

VI Identifier Vli-id {ns-prefix}/{domain}/resource/vi-id |This attribute
specifies the identifier
of the VI in which the
resource belongs to.

Domain resource-domain |{ns- Specify security

domain in which the
resource belongs to.

Subject profile

Subject related attributes allow building policy depending on the properties of the request Subject or user. Subject related

attributes are considered as a part of the XACML Subject definition.

Attribute name

Attribute ID

Full XACML attributeld
semantics

(e.g: ns-prefix =
http://geysers.eu/)

Notes

Indicate the identifier
entity of a specific
role.

Subject Identifier |subject-id {ns-prefix/subject/subject-id

{ns-prefix}/subject/subject-
role

Subject Role subject-role E.g: VIO, VIO-N, VIP,

PIP

Subject subject-confdata |{ns-prefix}/subject/subject- This attribute
Confirmation confdata specifies the material
Data using to confirm
subject. It could be an
authentication token
(e.g: SAML assertion,
Keberos ticket)

Action profile

Attribute Attribute ID Full XACML attributeld Notes
name semantics

(e.g: ns-prefix =
http://geysers.eu/)

Action ID action-id {ns-prefix}/action/action-id |Could use standard XACML
attribute:
urn:oasis:names:tc:xacml:1.0:
action:action-id

AAl Implementation with GAAA Toolkit

The AAIl implementation are implemented as Java OSGi service bundles that can be deployed in
Karaf/Servicemix enviroments, which includes authnsvc, authzsvc, tokensvc and the securitygateway bundles.

Authentication bundle

Service configuration

The authentication service uses a configuration file to store its parameters, including its public-private keypair, passphrase,
the list of trusted certificates and the session life-time for the authentication token.

The global configuration file contains following parameters:

BaseDir authnsvc/etc/upper-licl Path to authnsvc configuration directory

KeyStore upperlicl-authnsvc.jks Keystore (.jks) of the authnsvc authority, using for signing
SAML assertions

KeyStorePassword cloudsecurity Password to access keystore

KeyAlias upperlicl-authnsvc Key alias of the private key used for signing SAML token

KeyPassword authnsve-cloud Password to access private key

CredentialFileName Credentials Credentials (usernames, hashed passwords) of users.

CertificateTrustList ctl.properties File containing certificate trust list.

MaxSessionTimeOut | 30 The maximal session timeout for the SAML token, in
minutes

Certificate and public-private keypair generation

The authentication bundle needs a public/private keypair for SAML assertion issuing and verification. This keypair and its
equivalent X.509 certificate are stored in a .jks file specified by the “KeyStore” parameter. The script to generate this
keypair and its X.509 certificate needs the ‘keytool’ inside JRE Java Runtime Environment package.

#!/bin/bash
KEYSTORE="upperlicl-authnsvc.jks”
STORETYPE="JKS”
STOREPASS="cloudsecurity”
KEYPASS="authnsvc-cloud”
ALIAS="upperlicl-authnsvc”
VALIDITY=180

KEYSIZE=2048

keytool —-genkey -alias S$ALIAS -dname “CN=UpperLICL-AuthnSvc, OU=SNE Group, O=UvA, C=NL” -validity
SVALIDITY -keypass S$SKEYPASS “RSA” -keysize S$SKEYSIZE -keystore S$SKEYSTORE -storepass $STOREPASS -
storetype $STORETYPE

keytool -exportcert —-file “SALIAS.crt” -keystore SKEYSTORE -storepass S$SOTREPASS -alias S$SALIAS -rfc

The content of the X.509 certificate file (.crt) needs to be directly copied to the certificate trust list file specified within the
global configuration.

User Management

The credential file is used to store users’ authentication passwords. Each line in the file contains a user's credentials with
following format:

Susername:S$base64_password hashed:$base64 salt:Suser attribute file

The password hash is computed from the hash operations of the plaintext password and a random generated string called
‘salt’.

hash password = SHAI (SHAI (salt | password))

Note that an external administration tool ‘authnsvc-admin’ is provided in order to generate credentials from usernames
and passwords.

Authorization bundle

Service configuration

The authzsvc configuration folder contains the policyconfig.xml file and the policies folder as follows, first for the Upper-
LICL and secondly for the lower-LICL.

\policyconfig.xml

\policies\
permission-cci-operations.xml
permission-mli-replanning-vlink-operations.xml

permission-mli-replanning-vr-it-operations.xml

permission-mli-vi-operations.xml
permission-mli-vi-request-operations.xml
permission-ros-notifications.xml
permission-sli-operations.xml
PPS-PIP-Role.xml

PPS-VIO-N-Role.xml

PPS-VIO-Role.xml

RPS-PIP-Role.xml

RPS-VIO-N-Role.xml

RPS-VIO-Role.xml

\policyconfig.xml

\policies\
permission-prmi.xml
permission-ros-operations.xml
permission-vrmi.xml
PPS-PIP-Admin-Role.xml
PPS-VIP-Role.xml
RPS-PIP-Admin-Role.xml
RPS-VIP-Role.xml

List of policies are specified in the policyconfig.xml, including two types of policies: context and reference policies. The
context policies are policies identified based on the attribute of request, in this case are roles policies. Other policies are
identified by references.

Policy management

XACML policies are organized using RBAC profile as follows:

Permission policies

Permissions of an interface are defined in one or several xml files having file name syntax:

Permission-$interfaceName-$permissionGroup.xml

Permissions policies are:
e permission-cci-operations.xml
e permission-mli-replanning-vlink-operations.xml
e permission-mli-replanning-vr-it-operations.xml
e permission-mli-vi-operations.xml
e permission-mli-vi-request-operations.xml
e permission-prmi.xml
e permission-ros-notifications.xml
e permission-ros-operations.xml
e permission-sli-operations.xml

e permission-vrmi.xml

Permissions assigned to role policies

Permissions that are mapped to the role policies have the filename:

| PPS-$RoleName-Role.xml

Each policy of a role contains references to permission policies assigned to this role. For example with permissions assigned

to VIP role policy, it has permissions of VRMI interface, ROS-operations, SLI notifications and CCl notifications.

<?2xml version="1.0"2>

<PolicySet PolicySetId="PPS:VIP:role"

PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-overrides">

<Target/>

<!—- Rules for VIP role at L-LICL —->

<PolicySetIdReference>permission:

<PolicySetIdReference>permission:

<!——- Notification policy for VIP

<PolicySetIdReference>permission:

<!l—— Notification policy for VIP

<PolicySetIdReference>permission:

</PolicySet>

vrmi</PolicySetIdReference>

ros-operations</PolicySetIdReference>

at SML ——>

sli:notifications</PolicySetIdReference>

to NCP+ ——>

ceirnotifications</PolicySetIdReference>

Figure 9-1: Sample permissions assigned to the VIP role policy

Policy filenames are:

PPS-PIP-Admin-Role.xml
PPS-PIP-Role.xml
PPS-VIO-N-Role.xml
PPS-VIO-Role.xml

PPS-VIP-Role.xml

When the administrator needs to change determined permissions of a given role, he only needs to add or remove the

necessary references in the above files.

Role policies

These policies contain role attribute matching to link with permission assigned to role policies. Policy filenames are:

RPS-PIP-Admin-Role.xml
RPS-PIP-Role.xml
RPS-VIO-N-Role.xml
RPS-VIO-Role.xml

RPS-VIP-Role.xml

Conclusion

The document described the proposed AAIl for on-demand provisioned virtualised infrastructure services and provided
general implementation suggestions that provide necessary information for the ongoing AAI design and implementation.

YD: add aboiut future development, your plans about federation, trust model and infrastructure modelling.

(1]
(2]
(3]
(4]
(5]

(6]
(7]

(8]
[0l
(10]
(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

References

Generalised Architecture for Dynamic Infrastructure Services (GEYSERS Project) - http://www.geysers.eu/
GEYSERS Project Deliverable D2.1 - Initial GEYSERS Architecture & Interfaces Specification

GEYSERS Project Deliverable D3.1 - Functional Description of the Logical Infrastructure Composition Layer (LICL)
Generic Architecture for Cloud Infastrcuture as a Service (laaS) provisioning model. SNE Technical Report, 2011.
Demchenko, Y., J. van der Ham, M. Ghijsen, M. Cristea, V. Yakovenko, C. de Laat, "On-Demand Provisioning of
Cloud and Grid based Infrastructure Services for Collaborative Projects and Groups", The 2011 International
Conference on Collaboration Technologies and Systems (CTS 2011), May 23-27, 2011, Philadelphia, Pennsylvania,
USA

NIST Definition of Cloud Computing v15. [Online] http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-
v15.doc

OASIS Reference Architecture Foundation for Service Oriented Architecture 1.0, Committee Draft 2, Oct. 14, 2009.
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf

Chappell, D., "Enterprise service bus", O’Reilly, June 2004. 247 pp.

0SGi Service Platform Release 4, Version 4.2. - http://www.osgi.org/Download/Release4V42

TMF Service Delivery Framework. http://www.tmforum.org /servicedeliveryframework/4664/home.html

TMF Software Enabled Services Management Solution. -
http://www.tmforum.org/BestPracticesStandards/SoftwareEnabledServices/4664/Home.html

Zhao, G., C. Rong, J. Li, F. Zhang, Y. Tang, "Trusted Data Sharing over Untrusted Cloud Storage Providers," IEEE
International Conference on Cloud Computing Technology and Science, November 30-December 03, Indianapolis,
Indiana. pp. 97-103. ISBN: 978-0-7695-4302-4.

"Assessment of Access Control Systems", by Vincent C. Hu, David F.Ferraiolo, D. Rick Kuhn. Interagency Report

7316. [Online] Available: http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf

Samarati, P., S.C. de Vimercati, Access Control: Policies, Models, and Mechanisms, in book "Foundations of
Security Analysis and Design", LNCS, Springer Berlin/Heidelberg, 2001, Pages 137-196

Sandhu, R. & Samarati, P., 1994. “Access Control: Principles and Practice”, IEEE Communication Magazine,
September 1994, pp. 40-48.

Sandhu, R., Coyne, E. J., Feinstein, H. L. & Youman, C.E. 1996, "Role-Based Access Control Models", IEEE
Computer, February 1996, pp. 38-47.

Information Technology - Role Based Access Control, Document Number: ANSI/INCITS 359-2004, InterNational
Committee for Information Technology Standards, 3 February 2004, 56 p.

ISO/IEC 10181-3:1996 Information technology -- Open Systems Interconnection -- Security frameworks for open
systems: Access control framework. — Available in “OSG Authorization API”. - http://www.opengroup.org/online-
pubs?D0OC=9690999199&FORM=PDF

ITU-T Rec. X.812 (1995) | ISO/IEC 10181-3:1996, Information technology - Open systems interconnection -
Security frameworks in open systems: Access control framework. [Online]. Available:
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.812-199511-1!!PDF-E&type=items

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]

(37]

(38]

(39]

(40]

RFC2903 Laat de, C., G. Gross, L. Gommans, J. Vollbrecht, D. Spence, "Generic AAA Architecture,” Experimental
RFC 2903, Internet Engineering Task Force, August 2000. ftp://ftp.isi.edu/in-notes/rfc2903.txt

RFC 2904 - "AAA Authorization Framework" J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de
Bruijn, C. de Laat, M. Holdrege, D. Spence, August 2000 - http://tools.ietf.org/html/rfc2904

RFC2748: The COPS (Common Open Policy Service) Protocol, Edited Durham, D., January 2000. -
http://www.ietf.org/rfc/rfc2748.txt

RFC2753: A Framework for Policy-based Admission Control, January 2000. - http://www.ietf.org/rfc/rfc2753.txt
RFC3621: Framework for Session Set-up with Media Authorization, April 2003. -
http://www.ietf.org/rfc/rfc3521.txt

"GAAA Toolkit pluggable components and XACML policy profile for ONRP", Phosphorus Project Deliverable D4.3.1.
— September 30, 2008. [Online]. Available: http://www.ist-phosphorus.eu/files/ deliverables/Phosphorus-
deliverable-D4.3.1.pdf

Demchenko, Y., M. Cristea, C. de Laat, E. Haleplidis, Authorization Infrastructure for On-Demand Grid and Network
Resource Provisioning, Proceedings Third International ICST Conference on Networks for Grid Applications
(GridNets 2009), Athens, Greece, 8-9 September 2009. ISBN: 978-963-9799-63-9

Security Guidance for Critical Areas of Focus in Cloud Computing V2.1. Cloud Security Alliance, December 2009.

http://www.cloudsecurityalliance.org/csaguide.pdf

Cloud Computing: Benefits, risks and recommendations for information security, Editors Daniele Catteddu, Giles
Hogben, November 2009. http://www.enisa.europa.eu/ act/rm/files/deliverables/cloud-computing-risk-

assessment
Amazon AWS Security Center. Certification and Accreditation. - http://aws.amazon.com/security/#certifications
Amazon IAM. http://aws.amazon.com/documentation/iam/

Microsoft Azure Cloud Service.

http://www.microsoft.com/windowsazure/AppFabric/Overview/default.aspx

Demchenko, Y., C. Ngo, C. de Laat, "Access Control Infrastructure for On-Demand Provisioned Virtualised
Infrastructure Services", International Symposium on Security in Collaboration Technologies and Systems
(SECOTS2011), Part of CTS2011 Conference, 23-27 May 2011, Philadelphia, USA.

RFC5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. May
2008. http://www.ietf.org/rfc//rfc5280

Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS Standard Specification, 1 February
2006. [Online] http://www.oasis-open.org/committees/download.php/ 16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

Trusted Computing Group (TCG). [Online]. Available: https://www.trustedcomputinggroup.org/home

NIST Special Publication 800-14 - Generally Accepted Principles and Practices for Securing Information Technology
Systems. National Institute of Standards and Technology. September 1996. http://csrc.nist.gov/
publications/nistpubs/800-27/sp800-27.pdf

Demchenko, Y., D.R. Lopez, J.A. Garcia Espin, C. de Laat, "Security Services Lifecycle Management in On-Demand
Infrastructure Services Provisioning", International Workshop on Cloud Privacy, Security, Risk and Trust (CPSRT
2010), 2nd IEEE International Conference on Cloud Computing Technology and Science (CloudCom2010), 30
November - 3 December 2010, Indianapolis, USA.

Demchenko, Y., C. de Laat, T. Denys, C. Toinard, Authorization Session Management in On-Demand Resource
Provisioning in Collaborative Applications. COLSEC2009 Workshop, The 2009 International Symposium on
Collaborative Technologies and Systems (CTS 2009), May 18-22, 2009, Baltimore, Maryland, USA. IEEE Catalog:
CFP0916A-CDR. ISBN: 978-1-4244-4586-8. Pp. 201-208.

Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0, OASIS Standard, 15
March 2005. [Online]. Available: http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

SAML 2.0 Profile of XACML 2.0, Version 2.0. OASIS Standard, 1 February 2005. [Online]. Available:
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf

(41]

(42]
(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]
(51]
(52]

(53]
(54]

(55]

(56]

(57]

(58]

(59]

(60]

(61]

(62]

(63]

Shibboleth Attribute Authority Service. [Online]. Available from: http://shibboleth.internet2.edu/

RFC2853 - Generic Security Service APl Version 2 : Java Bindings. June 2000. http://www.ietf.org/rfc/rfc2853.txt
eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS Standard, 1 February 2005. [Online].

Available: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Multiple resource profile of XACML 2.0, OASIS Standard, 1 February 2005, available from http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-mult-profile-spec-os.pdf

Core and hierarchical role based access control (RBAC) profile of XACML v2.0, OASIS Standard, 1 February 2005.

[Online]. Available: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profilel-spec-os.pdf
The Liberty Alliance Project. [Online]. Available from: http://www.projectliberty.org/

Liberty Alliance ID-WSF 1.1 Specifications. [Online]. Available from:
http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifications

Security Assertion Markup Language (SAML) 2.0 Technical Overview, Working Draft 21, 21 February 2007.
[Online]. Available from: http://www.oasis-open.org/committees/download.php/22553/sstc-saml-tech-
overview-2%200-draft-13.pdf

Pautasso, C., 0.Zimmermann, F.Leymann, "RESTful Web Services vs. Big Web Services: Making the Right
Architectural Decision", 17th International World Wide Web Conference (WWW2008), Beijing, China.

Fuse ESB - OSGi based ESB. - http://fusesource.com/products/enterprise-servicemix/#documentation
Apache ServiceMix an Open Source ESB. - http://servicemix.apache.org/home.html

Spring Security. Reference Documentation. http://static.springsource.org/spring-security/site/
docs/3.1.x/reference/springsecurity-single.html

GFD.80 "The Open Grid Services Architecture, Version 1.5". Open Grid Forum, September 5, 2006.

Web Services Architecture. W3C Working Group Note 11 February 2004. [Online]. Available:
http://www.w3.org/TR/ws-arch/

Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS Standard Specification, 1 February
2006. [Online] http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

Web Services Security: SAML Token Profile 1.1, OASIS Standard, 1 February 2006. [Online]. Available from:
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-0s-SAMLTokenProfile.pdf

Hierarchical resource profile of XACML 2.0, OASIS Standard, 1 February 2005, available from http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf

Privacy policy profile of XACML v2.0. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-

privacy_profile-spec-os.pdf

XML Digital Signature profile of XACML v2.0. http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-
dsig-profile-spec-os.pdf

eXtensible Access Control Markup Language (XACML) Version 3.0, CD-1, 16-Apr-09. http://www.oasis-
open.org/committees/download.php/32425/XACML-3.0-cd-1-updated-2009-May-07.zip

XACML v3.0 Administration and Delegation Profile Version 1.0, CD-1, 16-Apr-09. http://www.0oasis-
open.org/committees/download.php/32425/XACML-3.0-cd-1-updated-2009-May-07.zip

XACML PDP Metadata Version 1.0, OASIS Working Draft, 24 February 2008. http://www.oasis-
open.org/committees/download.php/27316/xacml-3.0-metadata-v1-wd-01.zip

Bettini C., S. Jajodia, X. S. Wang, D. Wijesekera, “Provisions and Obligations in Policy Management and Security
Applications”, Proceedings of the 28™ VLDB Conference, Hong Kong, China, 2002.

(64]

(65]

(66]

(67]

OpenSAML library. [Online] Available: https://spaces.internet2.edu/display/OpenSAML/Home/

Generic AAA Toolkit pluggable Java library. [Online] Available:
http://www.phosphorus.pl/software.php?id=gaaa_tk

Sun's XACML Implementation. [Online] Available: http://sunxacml.sourceforge.net/

Canh Ngo; Demchenko, Y.; de Laat, C., "Toward a Dynamic Trust Establishment approach for multi-provider
Intercloud environment," Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on, vol., no., pp.532,538, 3-6 Dec. 2012

http://sunxacml.sourceforge.net/

appendix A Using SAML and XACML to support generic
Authorization scenario

The diagram below illustrates where SAML protocol and assertions and XACML Request/Response messages can be used
in a typical policy based decision making [40].

The following sections will provide details about SAML and XACML languages and their use for access control in distributed
service- oriented applications.

Request: SAMLAttributeStatement

.
PEP)« 1 AA
Response: SAMLAttributeStatement
Y Response [A
XACMLDecisionStatement .
XACML Response Assertion Request:
ACMLR AMLAttributeStat: t
c esponse SAMLAttributeStatement S ributeStatemen
Assertion
SAMLAttributeStatement
Response:
SAMLAttributeStatement
XACML Request
: XACMLRequest
Attribute Assertion u v
: » Request y
Repository I SAMLAttributeStatement XACMLDecisionQuery
PDP
Assertion /
XACMLPolicyStatement
. Response
Policy XACMLPolicyStaten Request
Repository XACMLPolicyQuery

Assertion
XACMLPolicyStatement

Note:

. All messages and statements semantics relates to
SAML 2.0 core specification and SAML profile for
XACML.

. XACML specific messaaes are marked exolicitlv with

Figure A.1. Using SAML and XACML for messaging and assertions

A.1 SAML security assertions expression and exchange format

A.1.1 SAML Overview

Security Assertion Markup Language (SAML) is a an XML-based standard for expressing and communicating authentication,
authorization and attribute information between distributed services.

The SAML operational security model suggests that all participating entities are members of the same security federation
that have established business agreements, trust relations and share common attributes semantics [15]. More advanced

SAML and Web Services based protocols can support attributes and assertions exchange between different federations
and security domains.

SAML Version 1.1 specification was published in 2003 and has been broadly used in identity management, web access
applications and Web services security. Current SAML Version 2.0 specification was published in 2006 and adopted
experience of the two major SAML implementation areas such as Shibboleth [41] and Liberty Alliance Identity Federation
Framework [46, 47].

The major SAML application areas include:

Web Single Sign-On (WebSSO) allows a user who has authenticated to one web site to access other web sites that are the
members of the same federation. SAML enables SSO providing a mean to communicate an authentication assertion from
the original login site to other sites a user wants to access or where the user request is forwarded or redirected. The
assertion then can be verified and validated and user authentication is confirmed.

Attribute-Based Authorization allows granting or denying user access to the protected resources based on user attributes
that can be groups, roles or other specific to applications user characteristics. SAML provides a mechanism to communicate
user attributes in addition to the user identity. User identity and attributes are managed and provide by the Identity
Provider (IdP) and Attribute Authority Service (AAS) that operates as a part of federation. Separating IdP/AAS from
Authentication and Authorization services simplifies typically distributed identity and access control infrastructure
management.

Web Services Security (WS-Security) framework uses SAML as one kind of the security tokens within SOAP messages to
convey security and identity information between actors in Web services interactions. The WS-Security SAML Token Profile
is used by the Liberty Alliance’s Identity Web Services Framework (ID-WSF) [18], Web Services Trust and Web Service
Federation frameworks to support SSO, identity federation, identity mapping and other services.

A.1.2 SAML Basic Concepts and Components

SAML specification and architecture defines basic building components that allow a number of use cases and supports
transfer of identity, attribute and authorization information between autonomous entities that have established trust
relations. The core SAML specification defines the structure and content of both assertion and protocol messages used to
transfer this information.

The means by which lower-level communication or messaging protocols (such as HTTP or SOAP) are used to transport
SAML assertion or protocol messages is defined by the SAML bindings. SAML profiles define constrains and/or extensions
to SAML assertions, protocol or binding to support the usage of SAML for a particular use case or application.

Two other concepts used for building and deploying interoperable SAML environment are metadata and authentication
context.

Metadata defines a way to express and share configuration information between SAML parties and include the following
data: site’s supported SAML bindings, operational roles (IdP, Service Provider (SP), etc), identifier information, supporting
identity attributes, federation names, and trusted keys information for encryption and signing.

Authentication context defines a way to provide information regarding the type and strength of authentication that a user
employed when they authenticated at an identity provider. This information is provided as a part of an assertion's
authentication statement. An SP can also include an authentication context in a request to an IdP to request that the user
be authenticated using a specific set of authentication requirements, such as a multi-factor authentication.

Figure A.2 below illustrates relations between the basic SAML concepts and components and more details provided below
[48].

Profiles
Combination of assertions,
protocols, and bindings to support
a defined use case

Bindings -
Mapp|ng Of SAML protoco's Authent|cat|0n Context
onto standard messaging and Type and strength of
communication protocols authentication
Protocols
Request and response Metadata
messages Configuration data for
Identity and Service
Assertions Providers
Authentication, attribute
and issuer information

Figure A.2. SAML components [48].

A.1.3 SAML Assertions

SAML allows for one party to assert security information in the form of statements about a subject. An assertion contains
some basic required and optional information that applies all assertions, and usually contains a subject of the assertion,
conditions used to validate the assertion, and assertion statements. SAML defines three kinds of statements that can be
carried within an assertion:

Authentication statements: These are created by the party that successfully authenticated a user. At a minimum, they
describe the particular means used to authenticate the user and the specific time at which the authentication took place.

Attribute statements: These contain specific identifying attributes about the subject (for example, that user “John Doe” is
a member of “Project A” with role “researcher”).

Authorization decision statements: These are issued based on the authorization decision may state what the subject is
entitled to do on the given resource (for example, “John Doe” is permitted to “create-reservation”, “start-experiment-
session” on the resource “Electronic Microscope XPS8076”). Authorization decision statement defined by the SAML2-

XACML2 profile may contain full authorization context (see details below).

A.1.4 SAML Protocols

SAML defines a number of generalised request/response protocols:

Assertion Query and Request Protocol: This is the basic SAML protocol that defines a set of queries by which SAML
authentication, authorization or attribute assertions may be obtained. The Query form of this protocol defines how a
relying party can ask for assertions (new or existing) on the basis of a specific subject and the desired statement type.

Authentication Request Protocol: Defines a means by which a principal (or an agent acting on behalf of the principal) can
request assertions containing authentication statements and, optionally, attribute statements. This protocol is used in

Web Browser SSO Profile when redirecting a user from an SP to an IdP in order authenticate user and optionally obtain
user attributes.

Single Logout Protocol: Defines a mechanism to allow logout of active sessions associated with a principal. The logout can
be directly initiated by the user, or initiated by an IdP or SP because of a session timeout, administrator command, etc.

Artifact Resolution Protocol: Provides a mechanism by which SAML protocol messages may be passed by reference using
a small, fixed-length value called an artifact. The artifact receiver uses the Artifact Resolution Protocol to ask the message
creator to dereference the artifact and return the actual protocol message.

Name Identifier Management and Name Identifier Mapping Protocols: Provide mechanisms to change or map the value
or format of the name identifier used to refer to a principal. The issuer of the request can be either the service provider or
the identity provider.

A.1.5 SAML Profiles

SAML profiles define how the SAML assertions, protocols, and bindings are combined and constrained to provide greater
interoperability in particular usage scenarios. The profiles usually named by used protocol and a defined application area
and include the following major profiles:

Web Browser SSO Profile: Defines how SAML entities use the Authentication Request Protocol and SAML Response
messages and assertions to achieve single sign-on with standard web browsers. It defines how the messages are used in
combination with the HTTP Redirect, HTTP POST, and HTTP Artifact bindings.

Assertion Query/Request Profile: Defines how SAML entities can use the SAML Query and Request Protocol to obtain
SAML assertions over a synchronous binding, such as SOAP.

Enhanced Client and Proxy (ECP) Profile: Defines a specialized SSO profile where specialized clients or gateway proxies
can use the Reverse-SOAP (PAOS) and SOAP bindings.

Single Logout Profile: Defines how the SAML Single Logout Protocol can be used with SOAP, HTTP Redirect, HTTP POST,
and HTTP Artifact bindings.

Identity Provider Discovery Profile: Defines one possible mechanism for service providers to learn about the identity
providers that a user has previously visited.

Other profiles are defined for Artifact Resolution Protocol, Name Identifier Management and Name ldentifier Mapping
Profile.

A.2 SAML Assertion datamodel and format

A.2.1 SAML top level elements

Figures below provide more detailed breakdown for SAML 2.0 Assertion format. The root element is called Assertion and
mandatory contains the Issuer element and attributes Version, ID and Issuelnstant. Depending on the profile the Assertion
element may contain one or many statements such as defined in the standard AuthnStatement, AuthzDecisionStatement,
AttributeStatement, or application defined statement that can be added through the abstract Statement element
providing standard extension point. Other optional elements include Subject which is important in many profiles and use
cases dealing with the identity information, Conditions and Advice. SAML Assertion may contain attached signature defined
by the XML Signature standard.

In the compact XML DTD format the Assertion element can be descried as:

<!ELEMENT Assertion (Issuer, Signature?, Subject?, Conditions?, Advice?,
(Statement | AuthnStatement | AuthzDecisionStatement | AttributeStatement) *)>
<!ATTLIST Assertion

Version CDATA #REQUIRED

ID ID #REQUIRED

IssueInstant CDATA #REQUIRED
>

The Subject element consists of two basic components — subject ID that can be expressed in different formats
and SubjectConfirmation that provides information how the subject identity was verified or authenticated. Both
types of information can be encrypted.The Subject element contains the following sub-elements:

<!ELEMENT Subject (((BaseID | NamelD | EncryptedID), SubjectConfirmation*) |
SubjectConfirmation+) >

<!ELEMENT SubjectConfirmation (SubjectConfirmationData?)>
<!ATTLIST SubjectConfirmation
Method CDATA #REQUIRED
>
<!ELEMENT SubjectConfirmationData (#PCDATA | *)*>
<!ATTLIST SubjectConfirmationData
NotBefore CDATA #IMPLIED
NotOnOrAfter CDATA #IMPLIED
Recipient CDATA #IMPLIED
InResponseTo CDATA #IMPLIED
Address CDATA #IMPLIED
>
<!ELEMENT SubjectLocality EMPTY>
<!ATTLIST SubjectlLocality
Address CDATA #IMPLIED
DNSName CDATA #IMPLIED
>

SAML Assertion provides the facility to describe conditions for assertion/credentials use and validity in the Conditions
element that contains time validity constrains attributes, and elements that describe audience/community restriction,
proxy/delegation restrictions and can also be extended to other application defined conditions.

The Advice element contains any additional information that the SAML authority wishes to provide. This information may
be ignored by applications without affecting either the semantics or the validity of the assertion. Some potential uses of
the Advice element include evidence supporting the assertion claims to be cited, either directly (through incorporating the
claims) or indirectly (by reference to the supporting assertions), timing and distribution points for updates to the assertion,
etc.

saml:AssertionType

B attributes

|

|

| | [Version|
MNE_J
=
|

|

|

|

Assertion [-] _
;saml:lssuer =

{~—FH-{ sambsubject [

................

o

,saml:nuthnstatement

’saml:nuthz[lecisinnstatement

,samI:Attrihutestatement

r - — —— — — — — — — — — —/
| saml:SubjectType |
| |
I |
|

| |

i~ saml:SubjectConfirmation [3]

 SamiSubjectConfirmatior B |

| 0.m |
| | E atiriputes | |
| | |
| | N
| —Lsaml:ﬁuhjec‘ttonﬁrmation El" saml:BaselD | | |
| 1. | r-Jr:;E-E_I: »Saml:HamelD | |
| | ; | |
| | P — — N
| | -y samkSubjectConfirmationData [| |
I - — J

Figure A.4. SAML Subject elements

A.2.2 SAML AuthnStatement and AttributeStatement format

The SAML AuthnStatement is used to convey authentication statement issued by an Identity Provider or an authentication
service and has the following structure:

<!ELEMENT AuthnStatement (SubjectLocality?, AuthnContext)>
<!ATTLIST AuthnStatement

AuthnInstant CDATA #REQUIRED

SessionIndex CDATA #IMPLIED

SessionNotOnOrAfter CDATA #IMPLIED
>

<!ELEMENT AuthnContext (((AuthnContextClassRef, (AuthnContextDecl | AuthnContextDeclRef) ?)
| (AuthnContextDecl | AuthnContextDeclRef)), AuthenticatingAuthority*)>

<!ELEMENT AuthnContextClassRef (#PCDATA)>
<!ELEMENT AuthnContextDecl (#PCDATA)>
<!ELEMENT AuthnContextDeclRef (#PCDATA)>
<!ELEMENT AuthenticatingAuthority (#PCDATA)>

The AuthnStatement has one mandatory attribute Authninstant that specifies the time at which the authentication took
place, and two optional attributes Sessionindex that specifies the index of a particular session between the principal
identified by the subject and the authenticating authority, and SessionNotOnOrAfter that specifies a time instant at which
the session between the principal identified by the subject and the

The SubjectLocality specifies the DNS domain name and IP address for the system from which the assertion subject was
apparently authenticated. SAML authority issuing this statement must be considered ended. The AuthnContext element
specifies the context of an authentication event. The element can contain an authentication context class reference, an
authentication context declaration or declaration reference, or both.

Listing below provides an example of the authentication Assertion containing AuthnStatement element.

<Assertion xmlns="urn:ocasis:names:tc:SAML:2.0:assertion"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"” ID="e0fcd9f023440a05d540ba365eledlfe"
Issuelnstant="2004-12-29T17:14:24.0852" Version="2.0">
<Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:X509SubjectName"
NameQualifier="cnl:subject:subject:AAAuthority">CN=Agent Smith, O=Matrix, C=NL</Issuer>
<Subject>
<NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:emailAddress"
NameQualifier="cnl:subject:customer">WHO740Qusers.collaboratory.nl</NameID>
<SubjectConfirmation>
<ConfirmationMethod>email</ConfirmationMethod>
<ConfirmationMethod>callback</ConfirmationMethod>
</SubjectConfirmation>
</Subject>
<Conditions NotBefore="2004-12-28T23:00:00.000Z" NotOnOrAfter="2005-01-
29T21:22:22.000Z2" />
<AuthnStatement AuthenticationInstant="2004-12-29T17:14:23.8752"
AuthenticationMethod="AuthenticationMethod X509 PublicKey">
<SubjectLocality DNSAddress="dns.collaboratory.nl" IPAddress="192.30.180.22"/>
</AuthnStatement>
</Assertion>

Figure A.5. Example SAML 2.0 Authentication Assertion

The SAML AttributeStatement provides a format for communicating Subject’s attributes issued by the Attribute Authority
or Identity Provider. Figure A.6 shows the structure of the SAML AttributeStatement element. It contains the following
elements:

<!ELEMENT AttributeStatement (Attribute | EncryptedAttribute) +>
<!ELEMENT Attribute (AttributeValue*)>
<!ATTLIST Attribute
Name CDATA #REQUIRED
NameFormat CDATA #IMPLIED
FriendlyName CDATA #IMPLIED
>

The AttributeStatement element describes a statement by the SAML authority asserting that the assertion subject is
associated with the specified attributes. Assertions containing AttributeStatement elements must contain a Subject
element. The AttributeStatement element may contain either attribute reference/value or encrypted attribute.

The Attribute element contains The Attribute element is used within an attribute statement to express particular attributes
and values associated with an assertion subject, it identifies an attribute by name and optionally includes its value(s). The
Attribute element has a obligatory attribute Name that holds the name of attribute, and optional attributes the
NameFormat representing the classification of the attribute name in URI format, and the FriendlyName providing a more
human-readable form of the attribute's name, which may be useful in cases in which the actual Name is complex or opaque,
such as an OID or a UUID.

Listing below provides an example of the authentication Assertion containing AuthnStatement element.

<Assertion xmlns="urn:ocasis:names:tc:SAML:2.0:assertion"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" ID="b4d00el1500d2a10a43d3d2fb5a578028"
Issuelnstant="2004-12-29T17:17:24.164Z2" Version="2.0">
<Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:X509SubjectName"
NameQualifier="cnl:subject:subject:AAAuthority">CN=Agent Smith, O=Matrix, C=NL</Issuer>
<Subject>
<NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:emailAddress"
NameQualifier="cnl:subject:customer">HEIS007@staff.collaboratory.nl</NameID>
<SubjectConfirmation>
<ConfirmationMethod>email</ConfirmationMethod>
<ConfirmationMethod>callback</ConfirmationMethod>
</SubjectConfirmation>
</Subject>
<Conditions NotBefore="2004-12-28T23:00:00.000Z" NotOnOrAfter="2005-01-
29T21:22:22.000z2" />
<AttributeStatement>
<Attribute xmlns:typens="urn:cnl" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" AttributeName="AttributeSubject"
AttributeNamespace="urn:cnl">
<AttributeValue xsi:type="typens:subject">Q@cnl:subject:role:manager</AttributeValue>
<AttributeValue xsi:type="typens:subject">cnl:subject:role</AttributeValue>
<AttributeValue xsi:type="typens:subject">jobID</AttributeValue>
</Attribute>
</AttributeStatement>
</Assertion>

Figure A.6. Example SAML 2.0 Attribute Assertion

A.2.3 SAML2.0 profile of XACML: SAML-XACML protocol and Authorization assertions format

Although XACML defines XACML Request/Response messages format, it doesn’t provide any suggestions about using one
or another transport container or protocol. Using XACML messages directly as authorization assertions impose some
security/integrity problems because they don’t have mechanisms to bind authority (trust) or express/imply security
restrictions as they are provided by the such SAML elements as Issuer or Conditions.

SAML2.0 profile of XACML (SAML-XACML) combines well established SAML security assertions format [40] and reach
functionality of the XACML policy format [43]. Such a solution provides a good combination between XACML policy
expression and evaluation functionality and SAML security assertion management functionality. SAML-XACML profile is
supported by the popular Open Source SAML implementation OpenSAML2.

The SAML2.0 profile of XACML defines the queries and assertions to support XACML based AuthZ services.

The XACMLAuthzDecisionQuery and XACMLPolicyQuery provide extension to the SAML protocol. The
XACMLAuthzDecisionStatement and XACMLPolicyStatement provide extensions to the SAML assertions.

The XACMLAuthzDecisionQuery is introduced as additional query type for the SAML2.0 protocol. In contrary to the basic
SAML2.0 queries, the XACMLAuthzDecisionQuery doesn’t contain the Subject element but used as container for the xacml-
context:Request message.

w

amlip:RequestAbstractType (extension)

B attributes

|
|
|
|
|
|
[xACMLAmhznecisiunQueryType E]J—
|
|
|
|
|

—E:E—L:acml-cuntext:lleques‘t

Figure A.7. XACML2.0 XACMLAuthzDecisionQuery format.

The XACMLAuthzDecisionStatement provides a container for XACML Request and Response messages that actually hold
all necessary information about the authorization decision in a native XACML format. Figure below illustrates how the
XACMLAuthzDecisionStatement is folded into the SAML assertion.

g]
: |
:
vs|
o
-3
|
=
g
|

xacml-context:ResponseType

|

|

|

| :
| ’xacml-context:Response
| 1 ..

|

|

|

xacml-context:RequestType

|, xacml-context:Subject
it e
1.0

| XACMLAuthzDecisionStatement [T‘]_Ej} |
|, saml:AuthnStatement

,xacml-context:Resource

- -i’ xacml-context:Request 5] =

1.

|, xacml-context:Action

|, xacml-context:Environment

Figure A.8. XACML2.0 Assertion containing XACMLAuthzDecisionStatement.

A.3 XACML policy expression and messaging format

A.3.1 XACML Policy logical model

XACML (eXtensible Access Control Markup Language) is the OASIS standard that provides a well defined policy
language with rich functionality to express complex rules for access control to different types of resources.
XACML allows defining different application specific profiles. A number of special XACML profiles are discussed
below.

The XACML policy logical model in a simple way can be presented as below. A XACML policy is defined for the
target tuple “Subject-Resource-Action” (S-R-A) which can also be completed with the Environment (S-R-A-E)
component to add additional context to instant policy evaluation. The Target element actually defines a
matching expression between (S-R-A-E) of the request and the policy:
Target (S, R, A, E) =>

=> Target (M(Sreq,Spol), M(Rreq,Rpol), M(Areq,Apol), M(Ereq,Epol))
where M — is a matching function between attributes provided in the request and embedded in the policy. It is
important to mention that XACML allows only 2 variables matching functions in the Target element which
however can be cascaded [43].

XACML policy may contain a number of rules which in its own turn may contain a number of conditions and a
rule Target used for rules matching (or selection). The Conditions can use a wide range of functions defined in
the XACML specification [4]. The following describes the structure of the Rule element:
Rule (Target (S, R, A, E),

Cond (F(Sreq, Spol), F(Rreq, Rpol), F(Areq, Apol), F(Ereq, Epol)),

Obligation)

where F —is a logical function between attributes provided in the request and embedded in the policy.

Additional flexibility for XACML policy rules definition is provided by the possibility to use the full functionality
of the XPath expressions that can refer to the ResourceContent element of the XACML Request message.

The XACML policy can also specify the policy Obligations as actions that must be taken on positive or negative
authorization decisions. Introducing policy obligations allows for more flexible policy definition by separating
stateless conditions that are based on the information provided in the access control request and stateful
conditions that may depend on the target system/resource state. Obligations are included into the policy
definition and returned by PDP to PEP which in its own turn should take actions as prescribed in the Obligation
instructions or statements. As an example, policy obligations may prescribe that some actions must be logged
or user account must be changed or mapped to another account when accessing the resource.

XACML Policy xacml;Policy
I Rule Combination
, Algorithm !
Target
S RA B} Policy Target
{SRA (B}
PolicySet
Rule ID#1
Policy :I-RJIe-'ITar-ggt:
{Rules, Obligs} ' {SRA}
— " Condifion”
I AttrDesignat!
e = - [}
POIICy_ lrMatch List-;
{Rules,Obligs} [yt 1
! _ Obligations 1 Rule 1D#n
L Obligations

Figure A.8. XACML policy model.

A decision request sent in a Request message provides context for the policy-based decision. The policy
applicable to a particular decision request may be composed of a number of individual rules or policies. Few
policies may be combined to form a single policy set that is applicable to the request. XACML specifies a number
of policy and rule combination algorithms. The Response message may contain multiple Result elements, which
are related to individual Resources.

Any of S-R-A-E elements allow for extensible “Attribute/AttributeValue” definition to support different
attributes semantics and data types. Additionally, XACML allows for referencing internal and external XML
documents elements by means of XPath functionality.

Two mechanisms can be used to bind the XACML policy to the resource: a Target element can contain any of S-
R-A-E attributes and a policy identification attribute IDRef. XACML policy format provides few mechanisms to
add and handle domain or session related context during the policy selection and request evaluation:

¢ Policy identification that is done based on the Target comprising of the Resource, Action, Subject, and
optionally Environment elements.

¢ Attributes semantics and metadata can be namespace aware and used for attributes resolution during the
request processing.

In complex authorization scenarios the security context e.g. from the previous authorization decision can be
provided as an environment or resource attribute.

A.3.2 XACML 2.0 special profiles

XACML 2.0 RBAC profile [45]

XACML RBAC profile describes how to built Policies requiring multiple Subjects and roles combination to access
a resource and perform an action. Multiple Subject elements in XACML allow flexibility when implementing
hierarchical RBAC model for such cases when some actions require superior subject/role approval to perform a
specific action. One or more <Subject> elements are allowed. A subject is an entity associated with the
access request. For example, one subject might represent the human user that initiated the application from
which the request was issued; another subject might represent the application’s executable code responsible
for creating the request; another subject might represent the machine on which the application was executing;
and another subject might represent the entity that is to be the recipient of the resource.

XACML Multiple Resources profile [44]

The conditions under which multiple <Resource> elements are allowed are described in the XACML Profile
for Multiple Resources. XACML Multiple Resources profile SHALL be interpreted as a request for access to all
resources specified in the individual <Resource> elements. For each <Resource>element, one
Individual Resource Request SHALL be created. This Individual Resource Request SHALL be identical to
the original request context with one exception: only the one <Resource>element SHALL be present. If such
a <Resource> element contains a “scope ” attribute having any value other than “Immediate”, then
the Individual Resource Request SHALL be further processed according to the corresponding enumerated
value of this attribute. This processing may involve decomposing the one Individual Resource Request into
other Individual Resource Requests before evaluation by the PDP.

XACML 2.0 Profile for Hierarchical Resources [49]

The hierarchical resource profile specifies how XACML can provide access control for a resource that
is organized as a hierarchy, which examples are Examples include file systems, XML documents, and
organizations. In this case resource is presented as set hierarchical nodes which are referred to as
resource-parent, resource-ancestor, and resource-ancestor-or-self.

XACML 2.0 Privacy Policy Profile [50]

This profile provides standard attributes and a standard <Rule> element for enforcing the privacy
protection principles, related to the purpose for which personally identifiable information is collected
and used.

This specifies the following attributes:

"urn:oasis:names:tc:xacml:2.0:resource:purpose”

This attribute indicates the purpose for which the data resource was collected. The owner of
the resource SHOULD be informed and consent to the use of the resource for this purpose.

"urn:oasis:names:tc:xacml:2.0:action:purpose"

This attribute indicates the purpose for which access to the data resource is requested.
XACML 2.0 XML Digital Signature Profile [51]

The profile provides a profile for use of the W3C XML-Signature Syntax and Processing Standard in
providing authentication and integrity protection for XACML schema instances. The signature
information must include a specification of the identity of the signer and a specification of the period
during which the signed data object is to be considered valid.

A.3.3 XACML 3.0 Specifications and profiles currently under review

XACML 3.0 specification [52] is currently under review at the final stage as a candidate specification. The new
specification provides better definition of the PEP-PDP interaction, adds the Advice element that in contrary to
the Obligation element is not obligatory for enforcing by PEP, extends both the Obligation and Advice elements
content with the ObligationExpression, AdviceExpression and AttributeExpression elements.

In the new specification the Policy and the Request and Response are defined by common schema with the
“xacml” namespace.

The structure of the XACML 3.0 Request was simplified and all attributes are now placed under the single
Attributes element, that contains two elements Attribute and Content, and can be distinguished by their
Attributeld’s. The Request reference multiple requests connected to the current one placed into the
MultiRequests element.

The response is extended to contain elements AssociatedAdvice that hold returned by PDP policy advices,
Status and PolicyldentifierList.

The profiles of XACML 2.0 are updated and the following new profiles are proposed.
XACML 3.0 Administration and Delegation Profile [53]

The XACMLv3.0 Administrative and Delegation profile can indicate if the policy is issued by the trusted
Policylssuer for the particular domain. In this case the PDP will rely on an already assigned or default PAP and
established trust relations, otherwise when other entity is declared as a Policylssuer, the PDP should initiate
checking administrative policy and delegation chain what is a suggested functionality of the PIP module.

XACML PDP Metadata (Working draft) [54]

XML PDP Metadata profile specifies an extensible schema for publishing information about PDP such as the
version of XACML implemented, supported standard functions and combining algorithms, supported optional
features, and the location of the PDP.

A.3.4 XACML2.0 policy datamodel

XACML provides a format for expressing policy for the generic Attribute Based Access Control (ABAC) model
and defines a simple Request/Response messages format.

Decision request sent in a Request message provides context for policy-based decision. The complete policy
applicable to a particular decision request may be composed of a number of individual rules or policies. Few
policies may be combined to form the single policy applicable to the request.

XACML defines three top-level policy elements: <Rule>, <Policy> and <PolicySet> [4]. The <Rule>
element contains a Boolean expression that can be evaluated in isolation, but that is not intended to be
accessed in isolation by a PDP. So, it is not intended to form the basis of an authorization decision by itself. It
is intended to exist in isolation only within an XACML PAP, where it may form the basic unit of management,
and be re-used in multiple policies.

The <Policy> element (see Figure 13) contains a set of <Rule> elements and a specified procedure for
combining the results of their evaluation. It is the basic unit of policy used by the PDP, and so it is intended to
form the basis of an authorization decision.

The <PolicySet> element contains a set of <Policy> or other <PolicySet> elements and a specified
procedure for combining the results of their evaluation. It is the standard means for combining separate policies
into a single combined policy.

XACML defines a number of Rule and Policy combining algorithms that define a procedure for arriving at an
authorization decision given the individual results of evaluation of a set of rules or policies, in particular:

e Deny-overrides,
e Permit-overrides,
e First applicable,

e Only-one-applicable.

XACML Policies are bound to subject and resource attributes that are different from their identities. XACML
allows multiple subjects and multi-valued attributes. XACML also allows policies based on resource content
what means that authorization decision may be based on content of the requested resource or its status.

Information security policies operate upon attributes of subjects, the resource and the action to be performed
on the resource in order to arrive at an authorization decision. In the process of arriving at the authorization
decision, attributes of many different types may have to be compared or computed. XACML includes a number
of built-in functions and a method of adding non-standard functions. These functions may be nested to build
arbitrarily complex expressions. This is achieved with the <Apply> element. The <Apply> element has an
XML attribute called Functionld that identifies the function to be applied to the contents of the element. Each
standard function is defined for specific argument data-type combinations, and its return data-type is also
specified.

Figure 14 shows the structure of Rule element. Policy is bound to the Target that is described by Subject,
Resource and Action. Policy may contain a number of rules defined by multiple Rule elements.

A rule is the most elementary unit of policy. The main components of a rule are target, condition that are
represented by subelements and effect which is included as an attribute of the Rule element.

The <Condition> element is a boolean function over subject, resource, action and environment attributes
or functions of attributes. If the <Condition> element evaluates to "True", then the enclosing <Rule>
element is assigned its Effect value. The <Condition> elementis of ApplyType complex type.

The <Apply> element denotes application of a function to its arguments, thus encoding a function call. The
<Apply> element can be applied to any combination of <Apply>, <AttributevValue>,
<SubjectAttributeDesignator>, <ResourceAttributeDesignator>,
<ActionAttributeDesignator>, <EnvironmentAttributeDesignator> and
<AttributeSelector> arguments.

XACML re-uses enumerated list of functions and operations defined in Xpath 2.0 [29] and XQuery 1.0 [30] used
in the Functionld attribute of the <Apply>/<Condition> element. Element Target contains matching
specification for the attributes of the Subject, Resource and Action.

Example of the XACML policy is provided in Appendix.

xacml:PolicyType

B attributes

Policyld

Y e
| r -. xacml:Actions []

T |
| :acml Resources [4] ‘ |
----------------------- |

—————————

xacml:RuleType

I B sttributes
=
|

84l 4
Ll]

Figure A.9. XACML Policy data model.

A.3.5 XACML Request and Response

XACML defines format for the Request message that provides context for the policy-based decision. Request
may contain multiple Subject elements and multiple attributes of the Subject, Resource and Action.

The request message consists of four mandatory elements Subject, Resource, Action, and Environment that
may contain multiple attributes presented as Attributeld — AttributeValue pairs. The Resource attribute may
also contain the ResourceContent element. The XACML2.0 speciation requires that all four elements are present
but may be empty.

The Environment element provides a possibility to include a security context information such as a Sessionld or
an authorization from the previous domain.

xacml-context:SubjectType |
E attributes |
7| | Subiectcategory ; I
—_————— |
| xacml-context:Attribute Type
—ancml-con‘text:ﬁuhjec‘t :

xacml-context:AttributeValue

E]

"
I
|
|
|
+ |
|
|
|
|
|
|
|

|
|

|

|

|

|

|

| 1

| ..o
|

|

|

|

|

|

|

Figure A.10. High-level elements of the XACML 2.0 Request.

Response message defined by XACML provides format for conveying Decision (“Deny” or “Permit”) and Status
of the decision making process. The Response message format may contain multiple Result elements as defined
by the request message and resource policy. The Result element contains a Decision element, which may
contain either “Permit” or “Deny” or “Intermediate”. The Status element may contain a simple status code (e.g.,
“OK”, “request-info”, etc.) and additional status information in the StatusMessage and StatusDetail sub-
elements.

| xacml-context:ResponseType

|
|
|
|
|
(oo B

== | xacml-context:Result =
T
L

1

Figure A.11. High-level elements of the XACML 2.0 Response.

A request message sent by a user or an application is an XML message sent with SOAP massage over HTTP
protocol. Such a request contains information about the Requestor/Subject, Resource and requested Action.
The response message contains a Decision result that may be either “Permit” or “Deny” for a final decision (or
“Intermediate” for an intermediate communication).

appendix 8 Web Services Security Framework (WS-
Security)

Web Services Architecture (WSA) [55] defines service according to Service Oriented Architecture (SOA) concept as a well-
defined set of actions, it is self-contained, stateless, and does not depend on the state of other services. WSA includes core
specifications SOAP (Simple Object Access Protocol) and WSDL (Web Services Description Language) Specifications from
W3C [56] and UDDI (Universal Description, Discovery, and Integration) [34], which together provide service description,
discovery and messaging framework for Web Services applications. “The description of a service in a SOA is essentially a
description of the messages that are exchanged. This architecture adds the constraint of stateless connections, that is
where the all the data for a given request must be in the request” [56]. Recently published WS-Resource Framework (WSRF)
[57] standards extend WSA with state management functionality as required for such application arias as Grid Services,
utility computing and business process management. WSRF actually provides functionality for managing stateful and
transient services required in Grid applications and was accepted as a basic platform for the Open Grid Services
Architecture (OGSA) [58].

Extended WSA includes such specifications as WS-Policy, WS-Coordination, WS-Transaction, WS-Inspection, WS-
Addressing, and WS-Security framework [59]. Some other components are added to the WSA framework cooperatively
with the Grid community, in particular, WS-Agreement as a set of Web services to provide a framework for negotiating
agreements [60], WS-Notification and WS-Resource Framework that add the ability to model stateful resources using Web
services [57].

WS-based specifications use SOAP header for communicating security context, i.e. initial security token or credential, what
is considered to be a solution transparent for applications as SOAP header is processed automatically in most WS/SOAP
applications. WS-Security describes enhancements to SOAP messaging to provide quality of protection through message
integrity, message confidentiality, and single message authentication. These mechanisms can be used to accommodate a
wide variety of security models and encryption technologies. WS-Security also provides a general-purpose mechanism for
associating security tokens with messages and describes how to encode binary security tokens, in particular, X.509
certificates, Kerberos tickets, and encrypted keys. The WS-Security Profile for XML-based Tokens describes how to use
XML-based tokens such as the SAML with the WS-Security specification. It also includes extensibility mechanisms that can
be used to further describe the characteristics of the credentials that are included with a message.

Other specifications from the WS-Security stack include WS-Policy[61], WS-SecurityPolicy [62] that specifies format for the
policy assertions, and WS-Trust (WST) [63] that enables Web Services to request and issue security tokens and to manage
trust relationships. WS-SecureConversation (WSSC) [64] defines extensions for secure communication by establishing and
sharing security contexts, and deriving session keys from security contexts. WS-Trust and WS-SecureConversation, as two
complimentary specifications, provide a framework for (dynamic or session based) trust and credentials negotiation for
Web Services. Additionally, WS-Federation (WSF) specification [65] proposes a framework for flexible Identity
Management and leverages both WS-Trust and WS-SecureConversation specifications. WSF can add more flexible
requestor identity management including pseudonymous services, identity and attributes mapping, single sign-on.

WST defines SOAP based mechanisms for brokering trust relationships, requesting and returning security tokens. Requests
for security tokens are made by sending a Request Security Token (RST) to the Security Token Service (STS). WST
specification defines three possible actions that can be performed: issue a new token, renew a token, or validate a token.
It is essential that all these requests must provide initial secure credential or token as a base for issuing a new token.

WS-Federation defines mechanisms for federated identity management that are used to enable identity, attribute,
authentication, and authorization federation across different trust realms. The federation model extends WS-Trust model
to describe how identity providers act as security token services and how attributes and pseudonyms can be integrated in
security token mechanisms to provide federated identity. Tokens can represent the principal’s primary identity or some
pseudonym. Services can request attribute/identity service based on provide token/pseudonym to obtain authorised
information about the identity. WS-Federation Active Requestor and Passive Requestor Profiles define how the cross trust

realm identity, authentication and authorization federation mechanisms can be used by active requestors such as SOAP-
enabled applications, or by passive requestors such as Web browsers to provide Identity Services. The functionality
provided by WS-Federation is similar to identity federation provided by Liberty Alliance Project — widely used solution for
federated Identity management [47].

However, it is important to stress that all these specifications don’t deal with the initial trust establishing. Trust relations
must be established in one or another way and presented in all WS-* interactions in a form of trust anchor or business
anchor (which is in its own turn should be cryptographically proven).

So, even when considering to use well-defined solutions for session/instant security context establishing with WST (or
other key management solutions like XKMS [67]) we still need to solve the problem of initial trust relations or establish an
initial trust anchor. In currently used solutions and implementation for inter-domain access control the problem is split in
two parts — federated trust for the attribute services/management (which is rather static) and confirmed/verifiable trust
for the identity (which is dynamically established or invoked). This means that based on explicitly existing and presented
trusted attribute credentials the identity credential confirmation/verification can be requested in a separated request to
the identity origination site. This model is actually based on the separation of Authentication and Authorization.

rppendix c Conformance to WS-Interoperability Basic
Profile and Basic Security Profile

WS-I Basic Security Profile conformance [63] - Extract

In order to conform to the BSP, any artefact that contains a construct that is addressed in the profile must conform to any
statements that constrain its use. Conformant receivers are not required to accept all possible conformant messages.
Conformance applies to deployed instances of services.

Since major portions of the BSP may or may not apply in certain circumstances, individual URIs may be used to indicate
conformance to parts of the BSP including the core profile or additional sections of the BSP for Username token, X.509
token, and SOAP attachments.

The BSP includes statements that are interoperability requirements as well as statements that are security considerations.
The normative requirement statements are identified by numbers prefixed with the letter 'R', for example Rnnnn where
nnnn is the statement number. These statements contain one requirement level keyword (i.e., "MUST") and one
conformance target. The following conformance targets are used in the BSP (Note: The list actually defines SOAP message
elements that must be supported by the message processor):

e SECURE_ENVELOPE - a SOAP envelope that contains sub-elements that have been subject to integrity and/or
confidentiality protection. A message is considered conformant when all of its contained artifacts are conformant
with all statements targeted to those artifacts as appropriate in the Basic Security Profile. Use of artifacts for
which there are no statements in the Basic Security Profile does not affect conformance.

e SECURE_MESSAGE: Protocol elements that have WS-Security applied to them. Protocol elements include a
primary SOAP envelope and optionally associated SOAP attachments.

e SENDER: Software that generates a message according to the protocol(s) associated with it. A sender is considered
conformant when all of the messages it produces are conformant and its behaviour is conformant with all
statements related to SENDER in the BSP.

e RECEIVER: Software that consumes a message according to the protocol(s) associated with it. A receiver is
considered conformant when it is capable of consuming conformant messages containing the artefacts that it
supports and its behaviour is conformant with all statements related to RECEIVER in the BSP.

INSTANCE: Software that implements a wsdl:port or a uddi:bindingTemplate.

SECURITY_HEADER: An element included as a child of soap:Envelope/soap:Header and named wsse:Security.
SOAP_HEADER - an element named soap:Header, included as a child of the SOAP_ENVELOPE.

TIMESTAMP - an element named wsu:Timestamp, included as a child of a SECURITY_HEADER.

MIME_BODY - the body of a multipart entity, as defined by MIME Basic Security Profile - Version 1.0 (BdAD)
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

MIME_PART: The MIME-defined header fields and contents of one of the parts in the body of a multipart entity
in a SECURE_MESSAGE.

HEADER_ELEMENT - an element included as a child of the SOAP_HEADER.
MIME_HEADER - a header field of a multipart entity, as defined by MIME.

MIME_PART - the MIME_BODY and all MIME_HEADERs associated with a single multipart entity, as defined by
MIME.

NONCE - an element named wsse:Nonce, included as a child of a USERNAME_TOKEN.
PASSWORD - an element named wsse:Password, included as a child of a USERNAME_TOKEN.
SIGNATURE: An element included as a child of a SECURITY_HEADER and named ds:Signature.
REFERENCE: A SIGNATURE ds:Reference element.

ENCRYPTED_DATA: An element named xenc:EncryptedData which is referenced by either an
ENCRYPTED_KEY_REFERENCE_LIST or an ENCRYPTION_REFERENCE_LIST.

ENCRYPTED_KEY: An element included as a child of a SECURITY_HEADER and named xenc:EncryptedKey.28 Rec.
ITU-T Y.2232 (01/2008)

ENCRYPTION_REFERENCE_LIST: An element which is included as a child of a SECURITY_HEADER and named
xenc:Referencelist.

ENCRYPTED_KEY_REFERENCE_LIST: An element which is included as a child of an ENCRYPTED_KEY and named
xenc:Referencelist.

SECURITY_TOKEN: Either an INTERNAL_SECURITY_TOKEN or an EXTERNAL_SECURITY_TOKEN (e.g., Username
token, X.509 certificate token, REL token, or SAML token).

SECURITY_TOKEN_REFERENCE: An element included as a descendant of a SECURITY_HEADER or an
ENCRYPTED_DATA and which is named wsse:SecurityTokenReference.

INTERNAL_SECURITY_TOKEN: A security token defined in a security token profile and that is either a child of a
SECURITY_HEADER or a child of a wsse:Embedded element in a SECURITY_TOKEN_REFERENCE.

EXTERNAL_SECURITY_TOKEN: A security token defined in a security token profile that is external to a
SECURE_ENVELOPE.

EXTERNAL_TOKEN_REFERENCE - a SECURITY_TOKEN_REFERENCE that refers to an EXTERNAL_SECURITY_TOKEN.
USERNAME_TOKEN - a SECURITY_TOKEN named wsse:UsernameToken.

X509_TOKEN - a BINARY_SECURITY_TOKEN containing an X.509 certificate.

BINARY_SECURITY_TOKEN - a SECURITY_TOKEN named wsse:BinarySecurityToken.

SAML_TOKEN - a SECURITY_TOKEN named saml:Assertion which conforms to the SAML 1.1 (via the OASIS Web
Services Security SAML Token Profile 1.0).

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

INTERNAL_SAML_TOKEN - an INTERNAL_SECURITY_TOKEN that is a SAML_TOKEN.

EXTERNAL_SAML_TOKEN - an EXTERNAL_SECURITY_TOKEN that is a SAML_TOKEN.SAML_AUTHORITY_BINDING - an
element named saml:AuthorityBinding, included as a child of an SECURITY_TOKEN_REFERENCE.

WS-I Basic Security Profile conformance [12] — Extract

The Basic Profile (BP) defines the following conformance targets (in addition to BSP):

MESSAGE - protocol elements that transport the ENVELOPE (e.g., SOAP/HTTP messages)
ENVELOPE - the serialization of the soap:Envelope element and its content

DESCRIPTION - descriptions of types, messages, interfaces and their concrete protocol and data format bindings,
and the network access points associated with Web services (e.g., WSDL descriptions) (from Basic Profile 1.0)

CONSUMER - software that invokes an INSTANCE (from Basic Profile 1.0)

REGDATA - registry elements that are involved in the registration and discovery of Web services (e.g. UDDI
tModels) (from Basic Profile 1.0)

Appendix D GSS-API Summary

