
 1

Aaauthreach Project Technical Report

Security Languages for Access Control and Authorisation: SAML and XACML
Languages Overview

Contributor: Yuri Demchenko <demch@science.uva.nl>

Abstracts

The chapter provides comprehensive overview and introduction to two closely inter-related XML-
based security languages standardised by OASIS: the Security Assertion Markup Language (SAML)
and the eXtensible Access Control Markup Language (XACML) and their special profiles.

The chapter also provides a short overview of the access control models and related security
services to create a background for better understanding the SAML and XACML and their relations.

The chapter also describes the policy Obligations Handling Reference Model (OHRM) that is
proposed by the authors to extend the XACML Authorisation handling model for Grid and networking
distributed applications.

The chapter describes an example of defining the XACML attributes and policy profile for Network
Resource Provisioning (XACML-NRP) and provides practical suggestions for attribute format
expression and policy identification.

It is intended that the provided information will be both helpful for specialists who needs a
comprehensive introduction into SAML and XACML and will serve as a reference material for
advanced users. The chapter refers to two Open Source libraries OpenSAML2.0 and SunXACML1.6
that provide reference implementation for SAML2.0 and XACML2.0. The SAML and XACML
examples are provided for better understanding the topic.

Copyright note

This report is provided for technical awareness and educational purposes. No part of this document
may not be used in other technical documents or technical reports without prior agreement with
author. The material may be used for educational purposes and for the development of educational
materials given the proper reference.

1 Introduct ion 3
2 Basic Concepts and Models in Access Control 3
2.1 Discretionally Access Control and Mandatory Access Control 3
2.2 Role Based Access Control 4
2.3 Generic AAA Authorisation Framework 5
2.4 Using SAML and XACML to support generic Authorisation scenario 7
3 SAML securi ty assert ions expression and exchange format 7
3.1 SAML Overview 7
3.2 SAML Basic Concepts and Components 8
3.3 SAML Assertion datamodel and format 11
3.3.1 SAML top level elements 11
3.3.2 SAML AuthnStatement and AttributeStatement format 14
4 XACML pol icy expression and messaging format 17
4.1 XACML overview 17
4.1.1 XACML Policy logical model 17
4.1.2 XACML Authorisation dataflow 18
4.1.3 XACML 2.0 special profiles 20
4.1.4 XACML 3.0 Specifications and profiles currently under review 21
4.2 XACML2.0 policy datamodel 22
4.3 XACML Request and Response messages 25
5 SAML2.0 prof i le of XACML: SAML-XACML protocol and Authorisat ion

assertions format 27
6 Policy Obligat ions and Obligat ions handl ing 29
6.1 Obligations definition and expression in the XACML policy 29
6.2 OHRM Obligation Handling Reference Model (OHRM) 29
6.2.1 Policy Obligations example 32
7 XACML-NRP attr ibutes and policy prof i le for Network Resource Provisioning

 32
7.1 Use case and requirements 33
7.2 Attributes defintion in XACML-NRP 33
7.3 Policy Obligations used in NRP 34
7.4 Attributes Expression conventions 35
7.5 Policy identification and policy resolution 36
8 Libraries and tools supporting SAML and XACML 37
8.1 OpenSAML Library and extensions 37
8.2 Sun’s XACML Java Library 37
9 References 38
Appendix A. Examples XACML Policy and Request/Response Messages 41

 3

1 Introduction

Protecting computer, network, information resources and data from unauthorised use and at the
same time ensure their availability are two major task of the security services in open computer and
communication systems.

Access control is enforced by access control systems that operates based on the
predefined/preconfigured access control policy.

Consistent security context management is an important condition for consistent security services
operation in open systems using client/server model and Service Oriented Architecture (SOA) Web
Services [1, 2]. Security context need to be transferred between security services that may be
located in different administrative and security domains. Under security context in general we
understand information that is required and/or can be used for evaluating a service request according
to the access control policy (e.g., user credentials or attributes defining their identity, permissions or
roles) or access control session credentials/variables (that may include previous conditional
authorisation decision, policy obligations, delegations or other session based restrictions).

Security context management is a part of secure object/service management environment. In the
protected computer/system execution environment the security context can in a form of environment
variables or program variables. However, if the security context need to be communicated between
systems or services that run on different computers/systems and between different domains, the
information and data need to be protected to ensure data confidentiality, integrity, authenticity and
additionally non-repudiation.

This chapter provides overview of the industry standard languages for security assertions expression
Security Assertion Markup Language (SAML) [3] that can be used for expressing user
attributes/credentials and general purpose security assertions and for rule based access control
policy expression eXtensible Access Control Markup Language (XACML) [4]. The chapter also
provide a short overview of the basic access control concepts and models.

2 Basic Concepts and Models in Access Control

2.1 Discretional ly Access Control and Mandatory Access Control

DAC suggests that the object owner defines a list of subjects or entities which are allowed access to
the object. Typical example is file access control list. Only those users specified by the owner may
have some combination of read, write, execute, and other permissions to the file. DAC policy tends to
be very flexible and is widely used in the commercial and government sectors. However, DAC is
known to be inherently weak for two reasons: granting read access is transitive; DAC policy is
vulnerable to Trojan horse attacks exploring subject impersonation. Therefore, the drawbacks of DAC
are as follows:

• Information can be copied from one object to another; therefore, there is no real assurance on the
flow of information in a system.

• No restrictions apply to the usage of information when the user has received it.

• The privileges for accessing objects are decided by the owner of the object, rather than through a
system-wide policy that reflects the organization’s security requirements.

ACLs and owner/group/other access control mechanisms are the most common mechanism for
implementing DAC policies

Other access control models and policies are grouped in the category of non-discretionary access
control (NDAC). As the name implies, policies in this category have rules that are not established at
the discretion of the user. Non-discretionary policies establish controls that cannot be changed by
users, but only through administrative action. Examples of NDAC are Separation of duty (SOD) and
Mandatory Access Control (MAC). SOD policy can be used to enforce constraints on the assignment
of users to roles or tasks. An example of such a static constraint is the requirement that two roles be
mutually exclusive; if one role requests expenditures and another approves them, the organization
may prohibit the same user from being assigned to both roles. Role-Based Access Control (RBAC)
uses SOD as a part of its concept.

Mandatory access control (MAC) policy means that access control policy decisions are made by a
central authority, not by the individual owner of an object, and the owner cannot change access
rights. An example of MAC occurs in military security, where an individual data owner does not
decide who has a Top Secret clearance, nor can the owner change the classification of an object
from Top Secret to Secret. MAC is the most mentioned NDAC policy and uses the following
approach: protection decisions must not be decided by the object owner; the system must enforce
the protection decisions (i.e., the system enforces the security policy over the wishes or intentions of
the object owner). Multilevel security models such as the Bell-La Padula Confidentiality and Biba
Integrity models are used to formally specify this kind of MAC policy. However, information can pass
through a covert channel in MAC, where information of a higher security class is deduced by
inference such as assembling and intelligently combining information of a lower security class.

Extended overview and analysis of the basic access control models can be found in the NIST
publication [5] or more research oriented paper [6].

2.2 Role Based Access Control

Although RBAC is technically a form of non-discretionary access control, it is often considered as one
of the three primary access control policies (the others are DAC and MAC). In RBAC, access
decisions are based on the roles that individual users have as part of an organization. Users take on
assigned roles (such as professor, student, operator, or manager). Access rights are grouped by role
name, and the use of resources is restricted to individuals authorized to assume the associated role.
The use of roles to control access can be an effective means for developing and enforcing
enterprise-specific security policies and for streamlining the security management process.

Under RBAC, users are granted membership into roles based on their competencies and
responsibilities in the organization. The operations that a user is permitted to perform are based on
the user's role. User membership into roles can be revoked easily and new memberships established
as job assignments dictate. Role associations can be established when new operations are instituted,
and old operations can be deleted as organizational functions change and evolve. This simplifies the
administration and management of privileges; roles can be updated without updating the privileges
for every user on an individual basis.

Generic RBAC model [7, 8, 9] provides an industry recognised solution for effective user
roles/privileges management and policy based access control. It extends Discretional Access Control
(DAC) and Mandatory Access Control (MAC) models with more flexible access control policy
management adoptable for typical hierarchical roles and responsibilities management in
organisations, but at the same time it suggest a full user access control management from user
assignment to granting permissions. This can be suitable for internal organisational environment and
particularly for human access rights management but reveals problems when applied to distributed
service-oriented environment.

 5

Sandhu in his two research papers [7, 8] describes 4 basic RBAC models:

• Core RBAC (RBAC0) that associates Users with Roles (U-R) and Roles with Permissions (R-P);

• Hierarchical RBAC (RBA1) that adds hierarchy to roles definition;

• Constrained RBAC (RBAC2) that extends RBAC0 with the constrains applied to U-R and R-P
assignment;

• Consolidated RBAC (RBAC3) that adds role hierarchy to RBAC2.

RBAC is described in the ANSI INCITS 359-2004 standard [9] that partly re-defined the first three
basic RBAC models in the context of static or dynamic separation of duties (SSD vs DSD). In both
models, initial Sandhu’s and ANSI RBAC, there is a notion of the user session which is invoked by a
user and provides instant session-based U-R association. Final result/stage of the RBAC functionality
are permissions assigned to the user based on static or dynamic U-R and R-P assignment. RBAC
doesn’t consider (user) permissions enforcement on the resource or access object. This functionality
can be attributed to other more service-oriented frameworks such as ISO/ITU X.811/X.812
Authentication/Authorisation framework [10, 11] or generic AAA Authorisation framework [12, 13].

2.3 Generic AAA Authorisat ion Framework

Authentication, authorization, and accounting (AAA) is a term used to refer to a framework for
intelligently controlling access to computer resources, enforcing policies, auditing usage, and
providing the information necessary to bill for services. These combined functions are considered
important for effective network management and security.

The generic Authentication, Authorisation, Accounting (AAA) architecture was proposed in RFC2903
[12] and generic AAA Authorisation framework (GAAA-AuthZ) is described in RFC2904 [13] as a
development of the ITU-T X.812 Authorisation framework [11] for distributed multidomain systems.

Authentication (AuthN) and Authorisation (AuthZ) are the components of the access control function
to ensure that access to a resource or service is granted to the access subject (human, service or
process) that has right to use the resource and perform those operation on the resource that it is
allowed.

Authentication is the process of identifying a user or an access subject, based on identity credentials
which examples are username and password, digital certificates, one-time-tokens, etc. Authentication
refers to the confirmation that a user/subject who is requesting services is a valid user of the
resources or services requested. Typically AuthN involves comparing a user's authentication
credentials with the user credentials stored in a user database (UserDB) or the AuthN/AAA service,
or checking validity of the user credentials obtained from the trusted AuthN service or trusted Identity
Provider.

Based on positive AuthN, a user must obtain authorization for doing certain tasks. Authorization is
the process of granting or denying a user access to network resources once the user has been
authenticated. The amount of information and the amount of services the user will be granted
depends on the user's authorization level which is defined by the user attribute credentials. In other
words, Authorization is the process of enforcing policies: determining what types or qualities of
activities, resources, or services a user is permitted. Usually, authorization occurs within the context
of authentication. Authenticated user is provided with the attributes that are required for authorisation
decision.

Accounting is the process of keeping track of a user's activity while accessing the resources or
services. Accounting is carried out by logging of session statistics and usage information and used
for trend analysis, capacity planning, billing, auditing and cost allocation.

In modern Service Oriented Architecture (SOA) applications a Resource or a Service are protected
by the site access control system that relies on both AuthN of the user and/or request message and
AuthZ that applies access control policies against the service request. It is essential in a service-
oriented model that AuthN credentials are presented as a security context in the AuthZ request and
that they can be evaluated by calling back to the AuthN service and/or Attribute Authority (AttrAuth).
This also allows for loose coupling of services in distributed hierarchical access control infrastructure.

The GAAA-AuthZ model is illustrated on Figure 1 and includes such major functional components as:
Policy Enforcement Point (PEP), Policy Decision Point (PDP), Policy Authority Point (PAP). It is
naturally integrated with the RBAC separated User-Role and Role-Privilege management model that
can be defined and supported by separate policies.

The Requestor requests a service by sending a service request ServReq to the Resource’s PEP
providing as much (or as little) information about the Subject/Requestor, Resource, Action as it
decides necessary according to the implemented authorisation model and (should be known) service
access control policies.

In a simple scenario, the PEP sends the decision request to the (designated) PDP and after receiving
a positive PDP decision relays a service request to the Resource. The PDP identifies the applicable
policy or policy set and retrieves them from the Policy Authority, collects the required context
information and evaluates the request against the policy.

In order to optimise performance of the distributed access control infrastructure, the Authorisation
service may also issue AuthZ assertion in the form of AuthzTicket that confirm access rights. They
are based on a positive decision from the Authorisation system and can be used to grant access to
subsequent similar requests that match an AuthzTicket. To be consistent, AuthzTicket must preserve
the full context of the authorisation decision, including the AuthN context/assertion and policy
reference.

AuthN User
(User Client)

Resource
(Operation/

Action)

PermOper

AuthZ Session
(AuthZ Assert)

Attribute
Authority

PDP

PEP UserCreds

Policy
Authority

IdP
(Used DB)

Figure 1. Generic Authentication and Authorisation services interaction.

 7

2.4 Using SAML and XACML to support generic Authorisation scenario

The diagram below illustrates where SAML protocol and assertions and XACML Request/Response
messages can be used in a typical policy based decision making [14].

The following sections will provide details about SAML and XACML languages and their use for
access control in distributed service- oriented applications.

PDP

AA PEP

PAP

Attribute
Repository

Policy
Repository

Request
XACMLPolicyQuery

Response
XACMLPolicyStatement

Assertion
XACMLPolicyStatement

Assertion
XACMLPolicyStatement

Assertion
SAMLAttributeStatement

Assertion
SAMLAttributeStatement

Response: SAMLAttributeStatement

Request: SAMLAttributeStatement

Request:
SAMLAttributeStatement

Response:
SAMLAttributeStatement

Assertion
SAMLAttributeStatement

Response
XACMLDecisionStatement

XACML Request
XACMLRequest

XACML Response
XACMLResponse

Request
XACMLDecisionQuery

Note:
• All messages and statements semantics relates to

SAML 2.0 core specification and SAML profile for
XACML.

• XACML specific messages are marked explicitly with

Figure 2. Using SAML and XACML for messaging and assertions

3 SAML security assertions expression and exchange format

3.1 SAML Overview

Security Assertion Markup Language (SAML) is a an XML-based standard for expressing and
communicating authentication, authorisation and attribute information between distributed services.

The SAML operational security model suggests that all participating entities are members of the
same security federation that have established business agreements, trust relations and share
common attributes semantics [15]. More advanced SAML and Web Services based protocols can
support attributes and assertions exchange between different federations and security domains.

SAML Version 1.1 specification was published in 2003 and has been broadly used in identity
management, web access applications and Web services security. Current SAML Version 2.0
specification was published in 2006 and adopted experience of the two major SAML implementation
areas such as Shibboleth [15] and Liberty Alliance Identity Federation Framework [16].

The major SAML application areas include:

Web Single Sign-On (WebSSO) allows a user who has authenticated to one web site to access
other web sites that are the members of the same federation. SAML enables SSO providing a mean
to communicate an authentication assertion from the original login site to other sites a user wants to
access or where the user request is forwarded or redirected. The assertion then can be verified and
validated and user authentication is confirmed.

Attribute-Based Authorisation allows granting or denying user access to the protected resources
based on user attributes that can be groups, roles or other specific to applications user
characteristics. SAML provides a mechanism to communicate user attributes in addition to the user
identity. User identity and attributes are managed and provide by the Identity Provider (IdP) and
Attribute Authority Service (AAS) that operates as a part of federation. Separating IdP/AAS from
Authentication and Authorisation services simplifies typically distributed identity and access control
infrastructure management.

Web Services Security (WS-Security) framework uses SAML as one kind of the security tokens
within SOAP messages to convey security and identity information between actors in Web services
interactions. The WS-Security SAML Token Profile is used by the Liberty Alliance’s Identity Web
Services Framework (ID-WSF) [18], Web Services Trust and Web Service Federation frameworks to
support SSO, identity federation, identity mapping and other services.

3.2 SAML Basic Concepts and Components

SAML specification and architecture defines basic building components that allow a number of use
cases and supports transfer of identity, attribute and authorisation information between autonomous
entities that have established trust relations. The core SAML specification defines the structure and
content of both assertion and protocol messages used to transfer this information.

The means by which lower-level communication or messaging protocols (such as HTTP or SOAP)
are used to transport SAML assertion or protocol messages is defined by the SAML bindings. SAML
profiles define constrains and/or extensions to SAML assertions, protocol or binding to support the
usage of SAML for a particular use case or application.

Two other concepts used for building and deploying interoperable SAML environment are metadata
and authentication context.

Metadata defines a way to express and share configuration information between SAML parties and
include the following data: site’s supported SAML bindings, operational roles (IdP, Service Provider
(SP), etc), identifier information, supporting identity attributes, federation names, and trusted keys
information for encryption and signing.

Authentication context defines a way to provide information regarding the type and strength of
authentication that a user employed when they authenticated at an identity provider. This information
is provided as a part of an assertion's authentication statement. An SP can also include an
authentication context in a request to an IdP to request that the user be authenticated using a
specific set of authentication requirements, such as a multi-factor authentication.

Figure 3 below illustrates relations between the basic SAML concepts and components and more
details provided below [15]. Figure 4 illustrates two basic use cases of the SAML protocol response
message containing SAML assertions that is carried by SOAP over HTTP (using HTTP and SOAP

 9

binding) (a) and the SAML assertion use in Web Services Security (using WS-Security SOAP token
profile [19]).

Assertions
Authentication, attribute
and issuer information

Protocols
Request and response

messages

Bindings
Mapping of SAML protocols

onto standard messaging and
communication protocols

Profiles
Combination of assertions,

protocols, and bindings to support
a defined use case

Metadata
Configuration data for
Identity and Service

Providers

Authentication Context
Type and strength of

authentication

Figure 3. SAML components [15].

HTTP response

SOAP envelop

SOAP body

SOAP header

SAML Response

Assertion

Authentication
statement

Other statement

wsse: Security

SAML Assertion

Authentication
statement

Other statement

wsse:SecurityToken
Reference

SOAP body

(a)
(b)

HTTP response

SOAP envelop

SOAP header

Figure 4. SAML protocol and assertions over HTTP (a) and with Web Services Security (b).

SAML Assertions

SAML allows for one party to assert security information in the form of statements about a subject.
An assertion contains some basic required and optional information that applies all assertions, and
usually contains a subject of the assertion, conditions used to validate the assertion, and assertion
statements. SAML defines three kinds of statements that can be carried within an assertion:

Authentication statements: These are created by the party that successfully authenticated a user.
At a minimum, they describe the particular means used to authenticate the user and the specific time
at which the authentication took place.

Attribute statements: These contain specific identifying attributes about the subject (for example,
that user “John Doe” is a member of “Project A” with role “researcher”).

Authorization decision statements: These are issued based on the authorisation decision may
state what the subject is entitled to do on the given resource (for example, “John Doe” is permitted to
“create-reservation”, “start-experiment-session” on the resource “Electronic Microscope XPS8076”).
Authorisation decision statement defined by the SAML2-XACML2 profile may contain full
authorisation context (see details below).

SAML Protocols

SAML defines a number of generalised request/response protocols:

Assertion Query and Request Protocol: This is the basic SAML protocol that defines a set of
queries by which SAML authentication, authorisation or attribute assertions may be obtained. The
Query form of this protocol defines how a relying party can ask for assertions (new or existing) on the
basis of a specific subject and the desired statement type.

Authentication Request Protocol: Defines a means by which a principal (or an agent acting on
behalf of the principal) can request assertions containing authentication statements and, optionally,
attribute statements. This protocol is used in Web Browser SSO Profile when redirecting a user from
an SP to an IdP in order authenticate user and optionally obtain user attributes.

Single Logout Protocol: Defines a mechanism to allow logout of active sessions associated with a
principal. The logout can be directly initiated by the user, or initiated by an IdP or SP because of a
session timeout, administrator command, etc.

Artifact Resolution Protocol: Provides a mechanism by which SAML protocol messages may be
passed by reference using a small, fixed-length value called an artifact. The artifact receiver uses the
Artifact Resolution Protocol to ask the message creator to dereference the artifact and return the
actual protocol message.

Name Identifier Management and Name Identifier Mapping Protocols: Provide mechanisms to
change or map the value or format of the name identifier used to refer to a principal. The issuer of the
request can be either the service provider or the identity provider.

SAML Bindings

SAML bindings detail exactly how the various SAML protocol messages can be carried over
underlying transport protocols. The bindings defined by SAML V2.0 are:

HTTP POST, Redirect, Artifact Bindings: Define how SAML protocol messages can be transported
using HTTP POST, redirect or artefact messages.

 1 1

SAML SOAP Binding: Defines how SAML protocol messages are transported within SOAP 1.1
messages, with details about using SOAP over HTTP.

Reverse SOAP (PAOS) Binding: Defines a multi-stage SOAP/HTTP message exchange that
permits an HTTP client to be a SOAP responder. Used in the Enhanced Client and Proxy Profile and
particularly designed to support WAP gateways.

SAML URI Binding: Defines a means for retrieving an existing SAML assertion by resolving a URI.

SAML Profiles

SAML profiles define how the SAML assertions, protocols, and bindings are combined and
constrained to provide greater interoperability in particular usage scenarios. The profiles usually
named by used protocol and a defined application area and include the following major profiles:

Web Browser SSO Profile: Defines how SAML entities use the Authentication Request Protocol and
SAML Response messages and assertions to achieve single sign-on with standard web browsers. It
defines how the messages are used in combination with the HTTP Redirect, HTTP POST, and HTTP
Artifact bindings.

Assertion Query/Request Profile: Defines how SAML entities can use the SAML Query and
Request Protocol to obtain SAML assertions over a synchronous binding, such as SOAP.

Enhanced Client and Proxy (ECP) Profile: Defines a specialized SSO profile where specialized
clients or gateway proxies can use the Reverse-SOAP (PAOS) and SOAP bindings.

Single Logout Profile: Defines how the SAML Single Logout Protocol can be used with SOAP,
HTTP Redirect, HTTP POST, and HTTP Artifact bindings.

Identity Provider Discovery Profile: Defines one possible mechanism for service providers to learn
about the identity providers that a user has previously visited.

Other profiles are defined for Artifact Resolution Protocol, Name Identifier Management and Name
Identifier Mapping Profile.

3.3 SAML Assert ion datamodel and format

3.3.1 SAML top level elements

Figures below provide more detailed breakdown for SAML 2.0 Assertion format. The root element is
called Assertion and mandatory contains the Issuer element and attributes Version, ID and
IssueInstant. Depending on the profile the Assertion element may contain one or many statements
such as defined in the standard AuthnStatement, AuthzDecisionStatement, AttributeStatement, or
application defined statement that can be added through the abstract Statement element providing
standard extension point. Other optional elements include Subject which is important in many profiles
and use cases dealing with the identity information, Conditions and Advice. SAML Assertion may
contain attached signature defined by the XML Signature standard.

In the compact XML DTD format the Assertion element can be descried as:

<!ELEMENT Assertion (Issuer, Signature?, Subject?, Conditions?, Advice?,

(Statement | AuthnStatement | AuthzDecisionStatement | AttributeStatement)*)>

<!ATTLIST Assertion

 Version CDATA #REQUIRED

 ID ID #REQUIRED

 IssueInstant CDATA #REQUIRED

>

The Subject element consists of two basic components – subject ID that can be expressed in
different formats and SubjectConfirmation that provides information how the subject identity was
verified or authenticated. Both types of information can be encrypted.The Subject element contains
the following sub-elements:

<!ELEMENT Subject (((BaseID | NameID | EncryptedID), SubjectConfirmation*) |
SubjectConfirmation+)>

<!ELEMENT SubjectConfirmation (SubjectConfirmationData?)>

<!ATTLIST SubjectConfirmation

 Method CDATA #REQUIRED

>

<!ELEMENT SubjectConfirmationData (#PCDATA | *)*>

<!ATTLIST SubjectConfirmationData

 NotBefore CDATA #IMPLIED

 NotOnOrAfter CDATA #IMPLIED

 Recipient CDATA #IMPLIED

 InResponseTo CDATA #IMPLIED

 Address CDATA #IMPLIED

>

<!ELEMENT SubjectLocality EMPTY>

<!ATTLIST SubjectLocality

 Address CDATA #IMPLIED

 DNSName CDATA #IMPLIED

>

SAML Assertion provides the facility to describe conditions for assertion/credentials use and validity
in the Conditions element that contains time validity constrains attributes, and elements that describe
audience/community restriction, proxy/delegation restrictions and can also be extended to other
application defined conditions.

The Advice element contains any additional information that the SAML authority wishes to provide.
This information may be ignored by applications without affecting either the semantics or the validity
of the assertion. Some potential uses of the Advice element include evidence supporting the
assertion claims to be cited, either directly (through incorporating the claims) or indirectly (by
reference to the supporting assertions), timing and distribution points for updates to the assertion,
etc.

 1 3

Figure 5. SAML Assertion top elements

Figure 6. SAML Subject elements

3.3.2 SAML AuthnStatement and AttributeStatement format

The SAML AuthnStatement is used to convey authentication statement issued by an Identity Provider
or an authentication service and has the following structure:

<!ELEMENT AuthnStatement (SubjectLocality?, AuthnContext)>

<!ATTLIST AuthnStatement

 AuthnInstant CDATA #REQUIRED

 SessionIndex CDATA #IMPLIED

 SessionNotOnOrAfter CDATA #IMPLIED

>

<!ELEMENT AuthnContext (((AuthnContextClassRef, (AuthnContextDecl |
AuthnContextDeclRef)?) | (AuthnContextDecl | AuthnContextDeclRef)),
AuthenticatingAuthority*)>

<!ELEMENT AuthnContextClassRef (#PCDATA)>

<!ELEMENT AuthnContextDecl (#PCDATA)>

<!ELEMENT AuthnContextDeclRef (#PCDATA)>

<!ELEMENT AuthenticatingAuthority (#PCDATA)>

The AuthnStatement has one mandatory attribute AuthnInstant that specifies the time at which the
authentication took place, and two optional attributes SessionIndex that specifies the index of a
particular session between the principal identified by the subject and the authenticating authority, and
SessionNotOnOrAfter that specifies a time instant at which the session between the principal
identified by the subject and the

The SubjectLocality specifies the DNS domain name and IP address for the system from which the
assertion subject was apparently authenticated. SAML authority issuing this statement must be
considered ended. The AuthnContext element specifies the context of an authentication event. The
element can contain an authentication context class reference, an authentication context declaration
or declaration reference, or both.

Figure 7. SAML AuthnStatement elements

 1 5

Listing below provides an example of the authentication Assertion containing AuthnStatement
element.

<Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
ID="e0fcd9f023440a05d540ba365e1ed1fe" IssueInstant="2004-12-29T17:14:24.085Z"
Version="2.0">

 <Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:X509SubjectName"
NameQualifier="cnl:subject:subject:AAAuthority">CN=Agent Smith, O=Matrix,
C=NL</Issuer>

 <Subject>

 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:emailAddress"
NameQualifier="cnl:subject:customer">WHO740@users.collaboratory.nl</NameID>

 <SubjectConfirmation>

 <ConfirmationMethod>email</ConfirmationMethod>

 <ConfirmationMethod>callback</ConfirmationMethod>

 </SubjectConfirmation>

 </Subject>

 <Conditions NotBefore="2004-12-28T23:00:00.000Z" NotOnOrAfter="2005-01-
29T21:22:22.000Z"/>

 <AuthnStatement AuthenticationInstant="2004-12-29T17:14:23.875Z"
AuthenticationMethod="AuthenticationMethod_X509_PublicKey">

 <SubjectLocality DNSAddress="dns.collaboratory.nl" IPAddress="192.30.180.22"/>

 </AuthnStatement>

</Assertion>

Figure 8. Example SAML 2.0 Authentication Assertion

The SAML AttributeStatement provides a format for communicating Subject’s attributes issued by the
Attribute Authority or Identity Provider. Figure 9 shows the structure of the SAML AttributeStatement
element. It contains the following elements:

<!ELEMENT AttributeStatement (Attribute | EncryptedAttribute)+>

<!ELEMENT Attribute (AttributeValue*)>

<!ATTLIST Attribute

 Name CDATA #REQUIRED

 NameFormat CDATA #IMPLIED

 FriendlyName CDATA #IMPLIED

>

The AttributeStatement element describes a statement by the SAML authority asserting that the
assertion subject is associated with the specified attributes. Assertions containing AttributeStatement
elements must contain a Subject element. The AttributeStatement element may contain either
attribute reference/value or encrypted attribute.

The Attribute element contains The Attribute element is used within an attribute statement to express
particular attributes and values associated with an assertion subject, it identifies an attribute by name
and optionally includes its value(s). The Attribute element has a obligatory attribute Name that holds
the name of attribute, and optional attributes the NameFormat representing the classification of the
attribute name in URI format, and the FriendlyName providing a more human-readable form of the
attribute's name, which may be useful in cases in which the actual Name is complex or opaque, such
as an OID or a UUID.

Figure 9. SAML AttributeStatement elements

Listing below provides an example of the authentication Assertion containing AuthnStatement
element.
<Assertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
ID="b4d00e1500d2a10a43d3d2fb5a578028" IssueInstant="2004-12-29T17:17:24.164Z"
Version="2.0">

 <Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:X509SubjectName"
NameQualifier="cnl:subject:subject:AAAuthority">CN=Agent Smith, O=Matrix,
C=NL</Issuer>

 <Subject>

 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:emailAddress"
NameQualifier="cnl:subject:customer">HEIS007@staff.collaboratory.nl</NameID>

 <SubjectConfirmation>

 <ConfirmationMethod>email</ConfirmationMethod>

 <ConfirmationMethod>callback</ConfirmationMethod>

 </SubjectConfirmation>

 </Subject>

 <Conditions NotBefore="2004-12-28T23:00:00.000Z" NotOnOrAfter="2005-01-
29T21:22:22.000Z"/>

 <AttributeStatement>

 <Attribute xmlns:typens="urn:cnl" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
AttributeName="AttributeSubject" AttributeNamespace="urn:cnl">

 <AttributeValue
xsi:type="typens:subject">@cnl:subject:role:manager</AttributeValue>

 <AttributeValue xsi:type="typens:subject">cnl:subject:role</AttributeValue>

 <AttributeValue xsi:type="typens:subject">jobID</AttributeValue>

 </Attribute>

 </AttributeStatement>

</Assertion>

Figure 10. Example SAML 2.0 Attribute Assertion

 1 7

4 XACML policy expression and messaging format

4.1 XACML overview

4.1.1 XACML Pol icy logical model

XACML (eXtensible Access Control Markup Language) is the OASIS standard that provides a well
defined policy language with rich functionality to express complex rules for access control to different
types of resources. XACML allows defining different application specific profiles. A number of special
XACML profiles are discussed below.

The XACML policy logical model in a simple way can be presented as below. A XACML policy is
defined for the target tuple “Subject-Resource-Action” (S-R-A) which can also be completed with the
Environment (S-R-A-E) component to add additional context to instant policy evaluation. The Target
element actually defines a matching expression between (S-R-A-E) of the request and the policy:
Target (S, R, A, E) =>

=> Target (M(Sreq,Spol), M(Rreq,Rpol), M(Areq,Apol), M(Ereq,Epol))

where M – is a matching function between attributes provided in the request and embedded in the
policy. It is important to mention that XACML allows only 2 variables matching functions in the Target
element which however can be cascaded [4].

XACML policy may contain a number of rules which in its own turn may contain a number of
conditions and a rule Target used for rules matching (or selection). The Conditions can use a wide
range of functions defined in the XACML specification [4]. The following describes the structure of the
Rule element:
Rule(Target (S, R, A, E),
 Cond (F(Sreq, Spol), F(Rreq, Rpol), F(Areq, Apol), F(Ereq, Epol)),
 Obligation)

where F – is a logical function between attributes provided in the request and embedded in the
policy.

Additional flexibility for XACML policy rules definition is provided by the possibility to use the full
functionality of the XPath expressions that can refer to the ResourceContent element of the XACML
Request message.

The XACML policy can also specify the policy Obligations as actions that must be taken on positive
or negative authorisation decisions. Introducing policy obligations allows for more flexible policy
definition by separating stateless conditions that are based on the information provided in the access
control request and stateful conditions that may depend on the target system/resource state.
Obligations are included into the policy definition and returned by PDP to PEP which in its own turn
should take actions as prescribed in the Obligation instructions or statements. As an example, policy
obligations may prescribe that some actions must be logged or user account must be changed or
mapped to another account when accessing the resource.

…

Policy Target
{S, R, A, (E)}

xacml:Policy

Rule Combination
Algorithm

Rule ID#1

Rule Target
{S, R, A}

Condition

Match List

AttrDesignat

Obligations

Rule ID#n

PolicySet

Policy
{Rules, Obligs}

Target
{S, R, A, (E)}

XACML Policy

Policy
{Rules,Obligs}

…

Obligations

Figure 11. XACML policy model.

A decision request sent in a Request message provides context for the policy-based decision. The
policy applicable to a particular decision request may be composed of a number of individual rules or
policies. Few policies may be combined to form a single policy set that is applicable to the request.
XACML specifies a number of policy and rule combination algorithms. The Response message may
contain multiple Result elements, which are related to individual Resources.

Any of S-R-A-E elements allow for extensible “Attribute/AttributeValue” definition to support different
attributes semantics and data types. Additionally, XACML allows for referencing internal and external
XML documents elements by means of XPath functionality.

Two mechanisms can be used to bind the XACML policy to the resource: a Target element can
contain any of S-R-A-E attributes and a policy identification attribute IDRef. XACML policy format
provides few mechanisms to add and handle domain or session related context during the policy
selection and request evaluation:

• Policy identification that is done based on the Target comprising of the Resource, Action, Subject,
and optionally Environment elements.

• Attributes semantics and metadata can be namespace aware and used for attributes resolution
during the request processing.

In complex authorisation scenarios the security context e.g. from the previous authorisation decision
can be provided as an environment or resource attribute.

4.1.2 XACML Authorisat ion dataf low

The generic authorisation infrastructure consists of

• RBE (Rule Based Engine) as a central policy based decision making point,

• PEP (Policy Enforcement Point) providing Resource specific AuthZ decision request/response
handling and policy defined obligations execution,

 1 9

• PAP (Policy Authority Point) or Policy DB as a policy storage (in general, distributed),

• PIP (Policy Information Point) providing external policy context and attributes to the RBE including
subject credentials and attributes verification

• RIP (Resource Information Point) that provides resource context.

• AA (Attribute Authority) that manages user attributes

To allow user access to the resource, Resource Agent requests via a Policy Enforcement Point
(PEP) an authorisation decision from a Policy Decision Point (PDP) that evaluates the authorisation
request against the policy defined for a particular job, resource and user attributes/roles. The access
policy is defined by the resource owner and stored in the policy repository.

The PEP and PDP may also request specific user attributes or credentials from the Authentication
service, or additional information from the Resource/Instrument.

Figure 12 illustrates an authorisation process dataflow when processing authorisation request by
XACML compatible systems [4]. To get user access to the resource, Resource authorisation gateway
requests via a Policy Enforcement Point (PEP) an authorisation decision from a Policy Decision Point
(PDP) that evaluates the authorisation request against the policy defined for a particular action,
resource and user attributes/roles. The access policy is defined by the resource owner and stored in
the Policy Authority Point (PAP). The PEP and PDP may also request specific user attributes or
credentials from the Authentication or Attribute Authority service, or additional information from the
Resource/Instrument.

Figure 12. XACML dataflow model showing the major actors and sequences [4].

The following sequence explains what steps are suggested during the XACML authorisation request
evaluation:

1. PAPs write policies and policy sets and make them available to the PDP. These policies or policy
sets represent the complete policy for a specified target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its native request format,
optionally including attributes of the subjects, resource, action and environment.

4. The context handler constructs an XACML request context and sends it to the PDP.

5. The PDP requests any additional subject, resource, action and environment attributes from the
context handler.

6. The context handler requests the attributes from a PIP.

7. The PIP obtains the requested attributes.

8. The PIP returns the requested attributes to the context handler.

9. Optionally, the context handler includes the resource in the context.

10. The context handler sends the requested attributes and (optionally) the resource to the PDP. The
PDP evaluates the policy.

11. The PDP returns the response context (including the authorization decision) to the context
handler.

12. The context handler translates the response context to the native response format of the PEP.
The context handler returns the response to the PEP.

13. If access is permitted, then the PEP permits access to the resource; otherwise, it denies access.
The PEP fulfils the obligations, generally, for both cases of possible PDP solutions.

4.1.3 XACML 2.0 special profi les

XACML 2.0 RBAC profile [20]

XACML RBAC profile describes how to built Policies requiring multiple Subjects and roles
combination to access a resource and perform an action. Multiple Subject elements in XACML allow
flexibility when implementing hierarchical RBAC model for such cases when some actions require
superior subject/role approval to perform a specific action. One or more <Subject> elements are
allowed. A subject is an entity associated with the access request. For example, one subject might
represent the human user that initiated the application from which the request was issued; another
subject might represent the application’s executable code responsible for creating the request; another
subject might represent the machine on which the application was executing; and another subject
might represent the entity that is to be the recipient of the resource.

XACML Multiple Resources profile [21]

The conditions under which multiple <Resource> elements are allowed are described in the XACML
Profile for Multiple Resources. XACML Multiple Resources profile SHALL be interpreted as a request
for access to all resources specified in the individual <Resource> elements. For each
<Resource>element, one Individual Resource Request SHALL be created. This Individual Resource
Request SHALL be identical to the original request context with one exception: only the one
<Resource>element SHALL be present. If such a <Resource> element contains a “scope ” attribute
having any value other than “Immediate”, then the Individual Resource Request SHALL be further
processed according to the corresponding enumerated value of this attribute. This processing may

 2 1

involve decomposing the one Individual Resource Request into other Individual Resource Requests
before evaluation by the PDP.

XACML 2.0 Profile for Hierarchical Resources [22]

The hierarchical resource profile specifies how XACML can provide access control for a resource that
is organized as a hierarchy, which examples are Examples include file systems, XML documents, and
organizations. In this case resource is presented as set hierarchical nodes which are referred to as
resource-parent, resource-ancestor, and resource-ancestor-or-self.

XACML 2.0 Privacy Policy Profile [23]

This profile provides standard attributes and a standard <Rule> element for enforcing the privacy
protection principles, related to the purpose for which personally identifiable information is collected
and used.

This specifies the following attributes:
"urn:oasis:names:tc:xacml:2.0:resource:purpose"

This attribute indicates the purpose for which the data resource was collected. The owner of
the resource SHOULD be informed and consent to the use of the resource for this purpose.

"urn:oasis:names:tc:xacml:2.0:action:purpose"

This attribute indicates the purpose for which access to the data resource is requested.

XACML 2.0 XML Digital Signature Profile [24]

The profile provides a profile for use of the W3C XML-Signature Syntax and Processing Standard in
providing authentication and integrity protection for XACML schema instances. The signature
information must include a specification of the identity of the signer and a specification of the period
during which the signed data object is to be considered valid.

Cross-Enterprise Security and Privacy Authorization (XSPA) Profile for Healthcare [25]

This profile is currently in public comments stage. The Cross-Enterprise Security and Privacy
Authorization (XSPA) profile of XACML describes several mechanisms to authenticate, administer,
and enforce authorization policies controlling access to protected information residing within or across
enterprise boundaries. The policies being administered and enforced relate to security, privacy, and
consent directives. This profile MAY be used in coordination with additional standards including Web
Services Trust Language (WS-Trust) and Security Assertion Markup Language (SAML).

4.1.4 XACML 3.0 Specif icat ions and prof iles currently under review

XACML 3.0 specification [26] is currently under review at the final stage as a candidate specification.
The new specification provides better definition of the PEP-PDP interaction, adds the Advice element
that in contrary to the Obligation element is not obligatory for enforcing by PEP, extends both the
Obligation and Advice elements content with the ObligationExpression, AdviceExpression and
AttributeExpression elements.

In the new specification the Policy and the Request and Response are defined by common schema
with the “xacml” namespace.

The structure of the XACML 3.0 Request was simplified and all attributes are now placed under the
single Attributes element, that contains two elements Attribute and Content, and can be distinguished

by their AttributeId’s. The Request reference multiple requests connected to the current one placed
into the MultiRequests element.

The response is extended to contain elements AssociatedAdvice that hold returned by PDP policy
advices, Status and PolicyIdentifierList.

The profiles of XACML 2.0 are updated and the following new profiles are proposed.

XACML 3.0 Administration and Delegation Profile [27]

The XACMLv3.0 Administrative and Delegation profile can indicate if the policy is issued by the
trusted PolicyIssuer for the particular domain. In this case the PDP will rely on an already assigned or
default PAP and established trust relations, otherwise when other entity is declared as a PolicyIssuer,
the PDP should initiate checking administrative policy and delegation chain what is a suggested
functionality of the PIP module.

XACML PDP Metadata (Working draft) [28]

XML PDP Metadata profile specifies an extensible schema for publishing information about PDP
such as the version of XACML implemented, supported standard functions and combining algorithms,
supported optional features, and the location of the PDP.

4.2 XACML2.0 pol icy datamodel

XACML provides a format for expressing policy for the generic Attribute Based Access Control
(ABAC) model and defines a simple Request/Response messages format.

Decision request sent in a Request message provides context for policy-based decision. The
complete policy applicable to a particular decision request may be composed of a number of
individual rules or policies. Few policies may be combined to form the single policy applicable to the
request.

XACML defines three top-level policy elements: <Rule>, <Policy> and <PolicySet> [4]. The
<Rule> element contains a Boolean expression that can be evaluated in isolation, but that is not
intended to be accessed in isolation by a PDP. So, it is not intended to form the basis of an
authorization decision by itself. It is intended to exist in isolation only within an XACML PAP, where
it may form the basic unit of management, and be re-used in multiple policies.

The <Policy> element (see Figure 13) contains a set of <Rule> elements and a specified
procedure for combining the results of their evaluation. It is the basic unit of policy used by the PDP,
and so it is intended to form the basis of an authorization decision.

The <PolicySet> element contains a set of <Policy> or other <PolicySet> elements and a
specified procedure for combining the results of their evaluation. It is the standard means for
combining separate policies into a single combined policy.

XACML defines a number of Rule and Policy combining algorithms that define a procedure for
arriving at an authorization decision given the individual results of evaluation of a set of rules or
policies, in particular:

• Deny-overrides,

• Permit-overrides,

• First applicable,

• Only-one-applicable.

 2 3

XACML Policies are bound to subject and resource attributes that are different from their identities.
XACML allows multiple subjects and multi-valued attributes. XACML also allows policies based on
resource content what means that authorisation decision may be based on content of the requested
resource or its status.

Information security policies operate upon attributes of subjects, the resource and the action to
be performed on the resource in order to arrive at an authorization decision. In the process of
arriving at the authorization decision, attributes of many different types may have to be compared
or computed. XACML includes a number of built-in functions and a method of adding non-standard
functions. These functions may be nested to build arbitrarily complex expressions. This is achieved
with the <Apply> element. The <Apply> element has an XML attribute called FunctionId that
identifies the function to be applied to the contents of the element. Each standard function is defined
for specific argument data-type combinations, and its return data-type is also specified.

Figure 14 shows the structure of Rule element. Policy is bound to the Target that is described by
Subject, Resource and Action. Policy may contain a number of rules defined by multiple Rule
elements.

A rule is the most elementary unit of policy. The main components of a rule are target, condition that
are represented by subelements and effect which is included as an attribute of the Rule element.

The <Condition> element is a boolean function over subject, resource, action and environment
attributes or functions of attributes. If the <Condition> element evaluates to "True", then the
enclosing <Rule> element is assigned its Effect value. The <Condition> element is of ApplyType
complex type.

The <Apply> element denotes application of a function to its arguments, thus encoding a function
call. The <Apply> element can be applied to any combination of <Apply>, <AttributeValue>,
<SubjectAttributeDesignator>, <ResourceAttributeDesignator>,

<ActionAttributeDesignator>, <EnvironmentAttributeDesignator> and
<AttributeSelector> arguments.

XACML re-uses enumerated list of functions and operations defined in Xpath 2.0 [29] and XQuery 1.0
[30] used in the FunctionId attribute of the <Apply>/<Condition> element. Element Target contains
matching specification for the attributes of the Subject, Resource and Action.

Example of the XACML policy is provided in Appendix.

Figure 13. XACML Policy data model.

 2 5

Figure 14. XACML Rule element.

4.3 XACML Request and Response messages

XACML defines format for the Request message that provides context for the policy-based decision.
Request may contain multiple Subject elements and multiple attributes of the Subject, Resource and
Action.

The request message consists of four mandatory elements Subject, Resource, Action, and
Environment that may contain multiple attributes presented as AttributeId – AttributeValue pairs. The
Resource attribute may also contain the ResourceContent element. The XACML2.0 speciation
requires that all four elements are present but may be empty.

The Environment element provides a possibility to include a security context information such as a
SessionId or an authorisation from the previous domain.

Figure 15. High-level elements of the XACML 2.0 Request.

Response message defined by XACML provides format for conveying Decision (“Deny” or “Permit”)
and Status of the decision making process. The Response message format may contain multiple
Result elements as defined by the request message and resource policy. The Result element
contains a Decision element, which may contain either “Permit” or “Deny” or “Intermediate”. The
Status element may contain a simple status code (e.g., “OK”, “request-info”, etc.) and additional
status information in the StatusMessage and StatusDetail sub-elements.

 2 7

Figure 15. High-level elements of the XACML 2.0 Response.

A request message sent by a user or an application is an XML message sent with SOAP massage
over HTTP protocol. Such a request contains information about the Requestor/Subject, Resource
and requested Action. The response message contains a Decision result that may be either “Permit”
or “Deny” for a final decision (or “Intermediate” for an intermediate communication).

5 SAML2.0 profile of XACML: SAML-XACML protocol and Authorisation
assertions format

Although XACML defines XACML Request/Response messages format, it doesn’t provide any
suggestions about using one or another transport container or protocol. Using XACML messages
directly as authorisation assertions impose some security/integrity problems because they don’t have
mechanisms to bind authority (trust) or express/imply security restrictions as they are provided by the
such SAML elements as Issuer or Conditions.

SAML2.0 profile of XACML (SAML-XACML) combines well established SAML security assertions
format [14] and reach functionality of the XACML policy format [3]. Such a solution provides a good
combination between XACML policy expression and evaluation functionality and SAML security
assertion management functionality. SAML-XACML profile is supported by the popular Open Source
SAML implementation OpenSAML2.

The SAML2.0 profile of XACML defines the queries and assertions to support XACML based AuthZ
services.

The XACMLAuthzDecisionQuery and XACMLPolicyQuery provide extension to the SAML protocol.
The XACMLAuthzDecisionStatement and XACMLPolicyStatement provide extensions to the SAML
assertions.

The XACMLAuthzDecisionQuery is introduced as additional query type for the SAML2.0 protocol. In
contrary to the basic SAML2.0 queries, the XACMLAuthzDecisionQuery doesn’t contain the Subject
element but used as container for the xacml-context:Request message.

Figure 16. XACML2.0 XACMLAuthzDecisionQuery format.

The XACMLAuthzDecisionStatement provides a container for XACML Request and Response
messages that actually hold all necessary information about the authorisation decision in a native
XACML format. Figure below illustrates how the XACMLAuthzDecisionStatement is folded into the
SAML assertion.

Figure 17. XACML2.0 Assertion containing XACMLAuthzDecisionStatement.

 2 9

6 Policy Obligations and Obligations handling

6.1 Obligat ions definit ion and expression in the XACML policy

The XACML policy can specify the Obligations as actions that must be taken on positive or negative
authorisation decisions. Introducing policy obligations allows for more flexible policy definition by
separating stateless conditions that are based on the information provided in the access control
request and stateful conditions that may depend on the target system/resource state. This
functionality is important for accounting in consumable resource provisioning or mapping requestor’s
identity to the resource pre-defined internal (pool) accounts, what is a common approach in computer
Grids.

There are no standard definitions in XACML version 2.0 how the obligated actions should be
processed. It should rely on the bilateral agreement between a resource manager/owner defining
policies and the PEP that will enforce PDP’s decision. The XACML specification requires that PEPs
must deny access unless they understand and can enforce all obligations returned in the PDP
Response message.

Figure 18. XACML2.0 Obligations element format.

6.2 OHRM Obligation Handling Reference Model (OHRM)

The idea of policy obligations is originated from the works by Sloman [31, 32] and Kudo [33]. The
provisional authorisation model was proposed by Kudo and was further implemented in the IBM’s
XACL (XML Access Control Language) [34]. The provisional AuthZ architecture includes Provisional
AuthZ Module (PAM) and Request Execution Module (REM). The provisional AuthZ means that PAM
can authorise a request provided the requestor or system (actually REM) will take some security
actions, defined as “provisional actions”) prior to the request execution. Examples of such actions
can be presenting additional credentials, signing privacy statements, logging events, etc.

The Obligations Handling Reference Model (OHRM) was proposed by authors [35] to support typical
Grid and network resource provisioning scenarios that require account mapping and conditional
authorisation decisions. Obligations are included into the policy definition and returned by PDP to
PEP which in its turn should take actions as prescribed in the obligation instructions or statements.

Figure 19 below illustrates the proposed model for processing obligations in the general case of the
Site Central AuthZ Service (SCAS). The SCAS means that all site/domain located resources and
services use a central AuthZ service that maintains a common set of policies for this domain. The
described processing model is compliant to the model used in XACML [4] but specifically focuses on
the obligations handling dataflow and adds Web services based AuthZ callout interface.

A number of assumptions are made to reflect possible options in AuthZ service infrastructure
implementation and different type of Obligations both stateful and stateless that are concerned with
assigning pool accounts, enforcing quotas, controlling usable resource (e.g., number of resource
access, purchased video/music listening time, etc.), logging and accounting.

It is important to notice that obligations are an integral part of the policy and typically included into the
policy at the stage of its creation by the policy administrator or resource owner. For the manageability
purpose, policy is considered stateless and the statefulness of obligations is achieved by the
obligation handlers. The obligations enforcement process may include few stages and can be
resulted either in modifying the service request (e.g., map from subject to account name/type) or by
changing the resource/system sate or environment variables.

The obligations handling model allows two types of obligations execution: at the time of receiving
obligations from the PDP and at the later time when accessing a resource or performing an
authorised action. First type is described below; the second type of handling obligations can be
achieved by using AuthZ ticket that holds obligations together with the AuthZ decision.

For the general (stateful) obligations handling process we can distinguish the following stages (note:
not all stages are necessary to be implemented in a simple use case but they may exist in different
cases):
Obligation0 = tObligation =>
 => Obligation1 (“OK?”, (Attributes1 V Environment1)) =>
 => Obligation2 (“OK?”, (Attributes2 V Environment2)) =>
 => Obligation3 (Attributes3 V Environment3)

1) Obligation0 (stateless) - obligations are returned by the PDP in a form as they are written in the
policy. These obligations can be also considered as a kind of templates or instructions, tObligation.
(Important to mention that due to security reason obligations format and semantics should not use
executable code or reference to locally executed commands).

2) Obligation1 or Obligation2 – obligations have been handled by the obligation handler at the
SCAS/PDP side and/or at the PEP side correspondingly, depending on implementation. In this case
templates or instructions of the Obligation0 are replaced with the real attributes in Obligation1, e.g. in
a form of “name-value” pair. During this stage, the obligation handler can actually enforce obligations
or modify obligations and send them further for enforcement by the resource. Introducing Obligation1
and Obligation2 handling stages gives flexibility to the proposed model as in many cases of the
remote PEP and PDP location both sides may not have necessary information for the full obligations
enforcement.

The result of obligations processing/enforcement, can be returned in a form of modified
AuthzResponse (Obligation1) or in a form of global resource environment changes that will be taken
into account at the time when the requested service/resource are provided or delivered. In both
cases (and specifically in the last case) obligation handler should return notification about fulfilled
obligated actions, e.g. in a form of Boolean value “False” or “True”, which will be taken into account
by PEP or other processing module to finally permit or deny service request by PEP.

 3 1

3) Obligation3 – this is the final stage when obligations actually take effect, which can be defined as
obligations “termination”. This is done by the resource itself or by trusted services
managed/controlled by the resource.

In the proposed model, option with Obligation1 handling stage at the SCAS or PDP side is introduced
to illustrate a case when we need to implement a stateful PDP/SCAS. This is achieved by adding
obligations handling functionality to the Context Handler module which functionality is defined flexibly
in the XACML specification.

One of the important aspects of the general obligations handling model is not discussed here, namely
logical or time wise sequence of enforcing obligations. The solution was proposed at Open Grid
Forum (OGF) OGSA Authorisation Working Group (AUTHZ-WG) [37] to add special Chronicle
attribute to the Obligation element in XACML, but this idea has not been further discussed.

SAML-XACML
RR

CVS
(extern)

Obligation
Handler

(OH-PDP)

Obligation
Handler

(OH-PEP)

Context
Handler

PEP

PDP PAP

State DB
(Usage

Controller)

State DB
(Usage

Controller)

AuthZ Gateway
(AuthZ Handler)

SAML-XACML
RR

PIP
(Ctx Hdlr)

Service/
Resource ServReq(Srv,An,Az)

Resource
ObligHdlr
(OH-R)

AzResp(Dcsn,Oblig2)

AzReq(Srv,Subj,Act))

XACMLAzReq
(S,R,A,E)

WSDL AuthZ PT
(SOAP/SSL) SAMLXACMLReq

(S,R,A,E)

XACMLAzResp
(Dcsn,Oblig1)

SAMLXACMLResp
(Decsn,Oblig)

XACMLAzReq
(S,R,A,E)

XACMLAzResp
(Dcsn,Oblig1)

XACMLAzResp
(Dcsn,Oblig0)

XACMLPolicy
(Target(S,R,A,E),
Rules(S,R,A,E),

Oblig0) 10

1

2

3

4

5

6

7

8

9

11

12
 13

14

15

16

17

18

19

20

Resource Site

Site Central AuthZ
Service (SCAS)

ServReq(Srv,Oblig2)

Rsr Environm,
state

Figure 19. Generic Authorisation dataflow and Obligations handling in distributed AuthZ service.

6.2.1 Policy Obligat ions example

Obligations expression in XACML can be described by the following general Obligation term:

Obligation = Apply (TargetAttribute, Operation (Variables)), or

Obligation = Apply (TargetAttribute, Operation (Variables), Chronicle)

Below example is provided only for illustration how account mapping obligation can be expressed in
the XACML2.0 compliant format. Obligation type is identified by ObligationId attribute which value for
this example contains value “map.poolaccount” that can used to call out to a designated
ObligationHandler. (Note, the example uses a dedicated namespace “http://authz-interop.org/xacml”
[37]).

<!-- Obligations format option 1 (UID, GID explicitly mentioned as separate XML elements
inside AttributeAssignment element) -->

<Obligations>

<Obligation

 ObligationId="http://authz-interop.org/xacml/obligation/map.poolaccount"

 FulfillOn="Permit">

<!-- This part specifies to what kind of attribute the next ‘map.to’ action is applied to -->

<AttributeAssignment

AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute: requesting-subject"

DataType="http://www.w3.org/2001/XMLSchema#string">

 <SubjectAttributeDesignator

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

 DataType="http://www.w3.org/2001/XMLSchema#string"/>

</AttributeAssignment>

<!-- This is actual account attribute name/value to which it should be mapped -->

<AttributeAssignment

AttributeId="http://authz-interop.org/xacml/obligation/attribute/uidgid"

DataType="http://www.w3.org/2001/XMLSchema#string">

 <UnixId DataType="http://www.w3.org/2001/XMLSchema#string">

 okoeroo>UnixId>

 < GroupPrimary DataType="http://www.w3.org/2001/XMLSchema#string">

 computergroup>GroupPrimary>

 <GroupSecondary DataType="http://www.w3.org/2001/XMLSchema#string">

 datagroup>GroupSecondary>

</AttributeAssignment>

</Obligation>

</Obligations>

7 XACML-NRP attributes and policy profile for Network Resource Provisioning

This section describes the XACML-NRP attributes and policy profile for Network Resource
Provisioning [38] as an example of how application specific profile can be created including a number
of practical suggestions about attributes expression and identification. The XACML-NRP profile refers
to and uses experience of developing XACML profile for authorisation in Grid [37].

 3 3

7.1 Use case and requirements

A policy framework and corresponding authorisation infrastructure to support NRP should meet the
following requirements:

• Allow for multidomain access control policy definition and interdomain security context
management.

• Support topology based policy conditions and rules

• Allow conditional AuthZ decision that should be evaluated in the next domain.

• Use open standards and AuthZ mechanisms that could be easy integrated into the network
services.

In particular, the last requirement indirectly implies limitation on separating context and state
management between stateless policy definition and PEP-PDP mechanisms to evaluate and manage
inter-domains security context and conditional policy decision. In other words, policy should be
stateless and security context and state management should be outsourced to a separate context
handling functionality that support communications between PEP and PDP intercepting actions
related to state information and modifying if necessary..

7.2 Attr ibutes def int ion in XACML-NRP

Network or resource related attributes

Network related attributes allow building policy depending on the network topology or other network
characteristics.

Topology format should provide necessary information about the network resource to allow
consistent policy evaluation, and vise versa the policy format may be defined by the network topology
to which the policy is applied. Topology semantics will define the resource attributes semantics, and
vice versa.

Network related attributes are considered as a part of the XACML Resource definition. The following
resource/network related attributes can be specified and used for authorisation:

• Domain ID (network domain)

• Subdomain (or relationship)

• VLAN

• Node or TNA and TNA prefix, or

• Interface ID

• Device or resource-type

• Link ID

• Link parameters: average delay and maximum bandwidth

• ReservationEPR that may directly or indirectly define the resource federation or
security/administrative domain

• Federation that defines a number of domains or nodes sharing common policy and attributes

As it was mentioned before, some more advanced scenarios may require that particular network
route or path is provided, in this case the policy definition should allow decision on the specific
features of path or on the path in total.

Subject related attributes

Subject related attributes allow building policy depending on the properties of the request Subject or
user. The following subject related attributes can be specified:

• Subject ID

• Subject confirmation that contains AuthN assertion/token or other attribute confirming subject’s ID
by trusted AuthN authority

• Subject Role

• Subject Group

• Subject Federation (e.g., Virtual Organisation, or Shibboleth AAI federation) or domain

• Subject context that can provide additional information about the Subject other than Subject
federation e.g. such as Session ID, or project/experiment name

Typically Subject attributes are provided as Subject credentials which depending on user client
implementation and middleware may take a form of X.509 public key and attribute certificates (PKC,
AC), SAML Authentication and Attribute assertions, proprietary AuthN system credentials.

Action and Environment related attributes

Action related attributes represent a limited number of the specific actions that requesting party can
ask to initiate network resource reservation, access or management.

Environment related attributes allow providing additional information for policy definition and
evaluation. There is no specific Environment attributes identified for the XACML-NRP profile but this
may be a place to put security context related information from the previous domain.

7.3 Policy Obligat ions used in NRP

Policy obligation is one of the authorisation policy enforcement mechanisms that allows adding AuthZ
decision enforcement components that can not be defined in the policy at the moment of making
policy decision by the PDP, or may not be known to the PDP or policy administrator/writer

Suggested functionality that can be achieved with using obligations includes but not limited to:

• Intra-domain network/VLAN mapping for cross-domain connections, that can be used to map
external/interdomain border links/TNA’s to internal VLAN and sub-network

• Network identity and account mapping

• Type of service (or QoS) assigned to a specific request or policy decision

• Quota assignment

• Service combination with implied conditions (e.g., computing and storage resources)

• Usable resources/quota

The need of account mapping may exist in cases when domain based Network Resource
Provisioning Systems (NRPS) have pre-installed/built-in pool accounts to which are different types or
quality of service are assigned. In such situation authorised user need to use one of such accounts,
e.g. “silver”, “golden”, “platinum”. A number of different individual accounts of the same type may be
limited, consequently a dynamically assigned account should be selected from the pool of available
or free accounts. Such dynamic account assignment can not be specified in the typically stateless
policy and cannot be done by PDP. However, the access control policy may contain instruction to
PEP to do such mapping.

The following scenarios of enforcing obligations can be considered:

 3 5

• Obligations are enforced by PEP at the time of receiving obligated AuthZ decision from PDP;

• Obligations are enforced at later time when the requestor accesses the resource or service

• Obligations are enforced before or after the resource or service delivered/accessed/consumed

Such functionality can be supported by ObligationHandlers that can be called either from the PEP or
from the SAML-XACML interface modules that handles request/response messages. Although
allowing simple solution/implementation, the first method will have problems when enforcing
Obligations for later access/use of the reserved service. To allow Obligations enforcement at later
time the AuthZ ticket or assertion can be used that contain all necessary information about the AuthZ
request/response context. In this case AuthZ ticket must be properly secured with the XML signature
and additionally encrypted. AuthZ ticket can use the SAML assertion containing
XACMLAuthzDecisionStatement.

7.4 Attr ibutes Expression conventions

This section provides suggestions and examples for the Resource and Subject attributes expression.
The Action attributes can use either simple string format or enumerated URN or URL style similar to
the Resource attributes. The proposed description is based on the current XACML-NRP and GAAA-
TK library implementation in the Phosphorus project [39] and can be used as an example how to
create a XACML profile for other application areas or use cases.

Resource attributes

In current implementation the Resource variable in the AuthZ request contains one attribute
ResourceURI in the form of URI string that includes the network resource identifier and a list of
parameter used for policy-based request evaluation. When sending a XACML Request to XACML
PDP the input URI string is converted into the set of the Resource attributes (organised as a
HashMap). The attribute names are taken from the XACML-NRP profile, such as “resource-id”,
“resource-domain”, “resource-realm”, “resource-type”, “source”, “target”, etc.

The following ResourceURI formats are supported:
a) http://testbed.ist-phosphorus.eu/{domain}/{device | service}/{parameters}

For example, the following URI will be converted to the set of resource attributes
http://testbed.ist-phosphorus.eu/viola/harmony/source=10.7.12.2/target=10.3.17.3
resource-id = http://testbed.ist-phosphorus.eu/viola/harmony

resource-realm = http://testbed.ist-phosphorus.eu

resource-domain = viola

resource-type = harmony

source = 10.7.12.2

target = 10.3.17.3

b) http://testbed.ist-phosphorus.eu/resource-type/{resource-type-name}

Subject attributes

The Subject variable of the AuthZ request may contain the following attributes:

a) SubjectId (attribute identifier “subject-id”) – subject identifier in RFC822 (email) or X.521 (LDAP or
X.509 Public Key Certificate) formats (must be the same as used in the SubjectConfirmatioData)

Example: WHO740@users.testbed.ist-phosphorus.eu

b) SubjectConfirmatioData (attribute identifier “subject-confdata”) – Authentication assertion or token
provided by the trusted AuthN service (can be also SAML AuthN Assertion, X.509 or VOMS attribute
certificate), or crypto-string provided local AuthN service.

c) SubjectRole (attribute identifier “subject-role”) – subject role, currently supporting single value.

Example: admin, or researcher@project01, or admin@viola.testbed.ist-phosphorus.eu

d) SubjectContext (attribute identifier “subject-context”) – this attribute is used for providing additional
information about a user (and a resource) association like VO, project, experiment/job.

Example: demo001; or VO-Phosphorus

Potentially this attribute can be extended to provide instant reservation context for dynamically
configured AuthZ service.

7.5 Policy identif icat ion and policy resolut ion

When evaluating AuthZ request the ContextHandler or PDP need to find/select an applicable policy.
This is typically done based on the request parameters such as Resource or Subject attributes.

The policy selecti0n/finding comprises of two steps: policy resolution and policy retrieval. Policy
resolution means extracting such information from the AuthZ request that can be used for further
policy selection in the storage/repository. Based on this information, a repository request or query
can be constructed to retrieve necessary policy.

Note, it is a SunXACML implementation convention that only one Policy or PolicySet should be
supplied to PDP for evaluation, and only one component Policy must be selected if using PolicySet.

The following components of the XACML-NRP profile can be used for policy resolution:

a) resource ID and resource attributes;

b) subject attributes defining context in which the request should evaluated, e.g. project or VO
(this information is typically a part of the subject attributes);

c) attributes and policy profile namespace, which can actually be a part of the resource ID if
expressed in Fully Qualified Attribute Name format (FQAN format).

Depending on the policy storage/repository implementation, the following components can be used
for policy identification:

a) policy file name and directory, if policy is stored as a file;

b) PolicyId attribute of the PolicySet or Policy element;

c) policy Target element that can include any of Subject, Resource, Action, Environment
elements.

Although using basically different ways of storing policies, the first case and second identification
methods can be based on similar approach to composing PolicyId attribute and (defining) policy file
location path. When using third option, the policy repository should be capable to query policy
database by the policy Target content.

It is suggested that the PolicyId or PolicySetId is created in the same way using typical for URL/URN
style conventions:

 3 7

PolicyId =

 <<url-namespace-prefix/>>testbed.ist-phosphorus.eu/viola/harmony/demo001/policy

PolicyId =

 <<urn-namespace-prefix:>>testbed.ist-phosphorus.eu:viola:harmony:demo001:policy

where
<<namespace-prefix>> - can be dropped;
namespace-prefix = http://authz-interop.org/nrp/xacml

or namespace-prefix = x-urn:authz-interop.org:nrp:xacml

Example URL style PolicyId expression:
PolicyId = http://authz-interop.org/nrp/xacml/ testbed.ist-
phosphorus.eu/phosphorus/demo001/policy

PolicyId = http://testbed.ist-phosphorus.eu/ viola/harmony/demo001/policy

PolicyId = http://testbed.ist-phosphorus.eu/ phosphorus/demo001/policy

8 Libraries and tools supporting SAML and XACML

8.1 OpenSAML Library and extensions

OpenSAML [40] is a set of open source C++ and Java libraries meant to support developers working
with SAML. OpenSAML2 supports SAML 1.0, 1.1, and 2.0 specifications.

The OpenSAML framework has a number of extensions and profiles for various application areas and
specific use cases developed by various development groups. Some of the extensions such as WS-
Addressing, WS-Security, WS-Trust and SAML2 profile of XACML are integrated into the core
OpenSAML2 library.

The SAML-XACML profile implementation in Globus Toolkit [41] and GAAA Toolkit (GAAA-TK) [42]
uses OpenSAML2 library. Globus Toolkit implementation provides simple Obligations handling
functionality as described in the XACML-Grid profile [38]. GAAA-TK implements OHRM that provides
common Obligations handling model and flexibility for distributed authorisation infrastructure. Both
implementations allow plugging in multiple ObligationHandlers that support different types of
obligations (that are identified by ObligationId) and can be called either from the PEP or from the
SAML-XACML interface modules that handle request/response messages.

8.2 Sun’s XACML Java Library

Sun's XACML implementation [43] provides a reference Open Source XACML implementation and
the most widely used. The library is also used as a basis for an ongoing Sun's project on Internet
Authorization by the Internet Security Research Group.

The project provides complete support for all the mandatory features of XACML as well as a number
of optional features. Specifically, there is full support for parsing both policy and request/response
documents, determining applicability of policies, and evaluating requests against policies. All of the
standard attribute types, functions, and combining algorithms are supported, and there are APIs for
adding new functionality as needed. The library provides also APIs for writing new retrieval
mechanisms used for finding things like policies and attributes.

Various external development projects and initiatives provide different XACML attributes and policy
extension to support application specific attribute sets and policy models. The two mentioned above
XACML-Grid and XACML-NRP profiles provide good examples.

9 References

[1] OASIS Reference Model for Service Oriented Architecture 1.0, Official Committee
Specification, Aug. 2, 2006. [Online]. Available: http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf

[2] Web Services Architecture. W3C Working Draft 8, August 2003. [Online]. Available:
http://www.w3.org/TR/ws-arch/

[3] Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0,
OASIS Standard, 15 March 2005. [Online]. Available: http://docs.oasis-
open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[4] eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS Standard, 1
February 2005. [Online]. Available: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-
2.0-core-spec-os.pdf

[5] "Assessment of Access Control Systems", by Vincent C. Hu, David F.Ferraiolo, D. Rick Kuhn.
Interagency Report 7316. [Online] Available:
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf

[6] Samarati, P., S.C. de Vimercati, Access Control: Policies, Models, and Mechanisms, in book
"Foundations of Security Analysis and Design", LNCS, Springer Berlin/Heidelberg, 2001,
Pages 137-196

[7] Sandhu, R. & Samarati, P., 1994. “Access Control: Principles and Practice”, IEEE
Communication Magazine, September 1994, pp. 40-48.

[8] Sandhu, R., Coyne, E. J., Feinstein, H. L., Youman, C.E. 1996, "Role-Based Access Control
Models", IEEE Computer, February 1996, pp. 38-47.

[9] Information Technology - Role Based Access Control, Document Number: ANSI/INCITS 359-
2004, InterNational Committee for Information Technology Standards, 3 February 2004, 56 p.

[10] ISO/IEC 10181-3:1996 Information technology -- Open Systems Interconnection -- Security
frameworks for open systems: Access control framework. – Available in “OSG Authorisation
API”. - http://www.opengroup.org/online-pubs?DOC=9690999199&FORM=PDF

[11] ITU-T Rec. X.812 (1995) | ISO/IEC 10181-3:1996, Information technology - Open systems
interconnection - Security frameworks in open systems: Access control framework. [Online].
Available: http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.812-199511-I!!PDF-
E&type=items

[12] RFC2903 Laat de, C., G. Gross, L. Gommans, J. Vollbrecht, D. Spence, "Generic AAA
Architecture,” Experimental RFC 2903, Internet Engineering Task Force, August 2000.
ftp://ftp.isi.edu/in-notes/rfc2903.txt

 3 9

[13] RFC 2904 - "AAA Authorization Framework" J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans,
G. Gross, B. de Bruijn, C. de Laat, M. Holdrege, D. Spence, August 2000 - ftp://ftp.isi.edu/in-
notes/rfc2904.txt

[14] SAML 2.0 Profile of XACML 2.0, Version 2.0. OASIS Standard, 1February 2005. [Online].
Available: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-
os.pdf

[15] Security Assertion Markup Language (SAML) 2.0 Technical Overview, Working Draft 21, 21
February 2007. [Online]. Available from: http://www.oasis-
open.org/committees/download.php/22553/sstc-saml-tech-overview-2%200-draft-13.pdf

[16] Shibboleth Attribute Authority Service. [Online]. Available from: http://shibboleth.internet2.edu/

[17] The Liberty Alliance Project. [Online]. Available from: http://www.projectliberty.org/

[18] Liberty Alliance ID-WSF 1.1 Specifications. [Online]. Available from:
http://www.projectliberty.org/resource_center/specifications/liberty_alliance_id_wsf_1_1_specifi
cations

[19] Web Services Security: SAML Token Profile 1.1, OASIS Standard, 1 February 2006. [Online].
Available from: http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-
SAMLTokenProfile.pdf

[20] Core and hierarchical role based access control (RBAC) profile of XACML v2.0, OASIS
Standard, 1 February 2005. [Online]. Available: http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

[21] Multiple resource profile of XACML 2.0, OASIS Standard, 1 February 2005, available from
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-mult-profile-spec-os.pdf

[22] Hierarchical resource profile of XACML 2.0, OASIS Standard, 1 February 2005, available from
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf

[23] Privacy policy profile of XACML v2.0. http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-privacy_profile-spec-os.pdf

[24] XML Digital Signature profile of XACML v2.0. http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-dsig-profile-spec-os.pdf

[25] Cross-Enterprise Security and Privacy Authorization (XSPA) Profile of XACML v2.0 for
Healthcare Version 1.0, Public Review Draft 02, 29-Apr-09. http://www.oasis-
open.org/committees/download.php/32444/xspa-xacml-profile-pr02dad_v3.doc

[26] eXtensible Access Control Markup Language (XACML) Version 3.0, CD-1, 16-Apr-09.
http://www.oasis-open.org/committees/download.php/32425/XACML-3.0-cd-1-updated-2009-
May-07.zip

[27] XACML v3.0 Administration and Delegation Profile Version 1.0, CD-1, 16-Apr-09.
http://www.oasis-open.org/committees/download.php/32425/XACML-3.0-cd-1-updated-2009-
May-07.zip

[28] XACML PDP Metadata Version 1.0, OASIS Working Draft, 24 February 2008.
http://www.oasis-open.org/committees/download.php/27316/xacml-3.0-metadata-v1-wd-01.zip

[29] XQuery 1.0 and XPath 2.0 Functions and Operators W3C Recommendation, 23 Jan. 2007.
See http://www.w3.org/TR/xpath-functions/.

[30] XQuery 1.0: An XML Query Language. W3C Recommendation 23 January 2007.
http://www.w3.org/TR/xquery/

[31] Sloman, M. Policy Driven Management for Distributed Systems. Journal of Network and
Systems Management, Volume 2, part 4. Plenum Press. 1994.

[32] Bettini C., S. Jajodia, X. S. Wang, D. Wijesekera, “Provisions and Obligations in Policy
Management and Security Applications”, Proceedings of the 28th VLDB Conference, Hong
Kong, China, 2002.

[33] Kudo M and Hada S, XML document security based on provisional authorization, Proceedings
of the Seventh ACM Conference on Computer and Communications Security, Nov 2000,
Athens, Greece, pp 87-96.

[34] XML Access Control Language (XACL)- http://xml.coverpages.org/xacl.html

[35] Demchenko, Y., C. de Laat, O. Koeroo, H. Sagehaug, Extending XACML Authorisation Model
to Support Policy Obligations Handling in Distributed Applications, Proceedings of the 6th
International Workshop on Middleware for Grid Computing (MGC 2008), December 1, 2008,
Leuven, Belgium. ISBN:978-1-60558-365-5.

[36] Demchenko, Y., C. M. Cristea, de Laat, XACML Policy profile for multidomain Network
Resource Provisioning and supporting Authorisation Infrastructure, IEEE International
Symposium on Policies for Distributed Systems and Networks (POLICY 2009), July 20-22,
2009, London, UK.

[37] Open Grid Forum OGSA Authorisation Working Group. [Online] Available:
https://forge.gridforum.org/projects/ogsa-authz

[38] An XACML Attribute and Obligation Profile for Authorization Interoperability in Grids. [Online]
Available: https://edms.cern.ch/document/929867/1

[39] PHOSPHORUS Project. [Online] Available: http://www.ist-phosphorus.eu/

[40] OpenSAML library. [Online] Available: https://spaces.internet2.edu/display/OpenSAML/Home/

[41] Globus Toolkit. [Online] Available: http://www.globus.org/toolkit/

[42] Generic AAA Toolkit pluggable Java library. [Online] Available:
http://www.phosphorus.pl/software.php?id=gaaa_tk

[43] Sun's XACML Implementation. [Online] Available: http://sunxacml.sourceforge.net/

 4 1

Appendix A. Examples XACML Pol icy and Request /Response Messages

The examples in this section illustrate how Obligations can be expressed in the XACML policy format
models an idea to communicate PEP Obligations handling capability to the PDP in the Environment
element. However, to make it possible to select the applicable policy based on returned Obligations,
we need to put explicit values of the ObligationId’s into the policy Environment matching expression.

a) Policy example that permits access to the resource “VO-EGEE/CE01” for subjects that have Virtual
Organisation EGEE (VO-EGEE) membership provided as “subject-vo” Subject attribute. The policy
also imply obligation to map-the Subject identity “subject-id” attribute to the pool account defined by
UID and GUD.

<?xml version="1.0" encoding="UTF-8"?>

<Policy

 xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os"

 xmlns:md="http://www.medico.com/schemas/record"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os

 access_control-xacml-2.0-policy-schema-os.xsd"

 PolicyId="urn:oasis:names:tc:xacml:2.0:policy:example841:policy"

 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:deny-overrides">

 <Description>Example - Policy: Obligation ID negotiation - as PEP type in the
Resource attribute</Description>

 <PolicyDefaults>

 <XPathVersion>http://www.w3.org/TR/1999/Rec-xpath-19991116</XPathVersion>

 </PolicyDefaults>

 <Target>

 <Subjects>

 <Subject>

 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">

 VO-EGEE</AttributeValue>

 <SubjectAttributeDesignator
SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject:-category:access-subject"
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-vo"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

 </SubjectMatch>

 </Subject>

 </Subjects>

 <Resources>

 <Resource>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-
equal">

 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">http://nikhef.nl/VO-EGEE/CE01

 </AttributeValue>

 <ResourceAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#URI"/>

 </ResourceMatch>

 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-
equal">

 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GLite-
CE</AttributeValue>

 <ResourceAttributeDesignator AttributeId="urn:some:path:peptype"
DataType="http://www.w3.org/2001/XMLSchema#String"/>

</ResourceMatch>

 </Resource>

 </Resources>

 </Target>

 <Rule RuleId="urn:oasis:names:tc:xacml:2.0:policy:example841:rule"
Effect="Permit">

 <Description>

 User with role "researcher" from "VO-EGEE" can access Resource
"http://nikhef.nl/VO-EGEE/CE01".

 </Description>

 <Target>

 <Actions>

 <Action>

 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-
equal">

 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">SubmitJob</AttributeValue>

 <ActionAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

 </ActionMatch>

 </Action>

 </Actions>

 </Target>

 <Condition>

 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">

 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">researcher</AttributeValue>

 <SubjectAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-role"
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="EGEEAttributeIssuer"/>

 </Apply>

 </Condition>

 </Rule>

 <Obligations>

 <Obligation ObligationId="urn:oasis:names:tc:xacml:2.0:scas-
policy:example007:policy:obligation.UID" FulfillOn="Permit">

 <AttributeAssignment
AttributeId="urn:oasis:names:tc:xacml:1.0:example:attribute:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#string">

 <SubjectAttributeDesignator

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

 DataType="http://www.w3.org/2001/XMLSchema#string"/>

 </AttributeAssignment>

<!-- This is actual account attribute/name to which it should be mapped -->

 <AttributeAssignment
AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:poolaccount"
DataType="http://www.w3.org/2001/XMLSchema#string">

 <PoolAccountDesignator

AttributeId="http://glite.egee.org/JRA1/Authz/XACML/obligation/poolaccount”

 DataType="http://www.w3.org/2001/XMLSchema#string"/>

 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">egee-
pool-next-available</AttributeValue>

 </AttributeAssignment>

 </Obligation>

 <Obligation ObligationId="urn:oasis:names:tc:xacml:2.0:scas-
policy:example841:policy:obligation.GID" FulfillOn="Permit">

 4 3

 <AttributeAssignment
AttributeId="urn:oasis:names:tc:xacml:1.0:policy:subject:subject-group"
DataType="http://www.w3.org/2001/XMLSchema#string">

 GID-researchers

 </AttributeAssignment>

 </Obligation>

 </Obligations>

</Policy>

b) Request that contains additional Resource/Attribute information “peptype” that indicates specific
PEP type/functionality.
<?xml version="1.0" encoding="UTF-8"?>

<Request

 xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:context:schema:os

 access_control-xacml-2.0-context-schema-os.xsd">

 <!-- Example - Request: Supported Obligations negotiation - PEP type is included
in the Resource attribute -->

 <Subject>

 <Attribute

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>Wim Huizinga</AttributeValue>

 </Attribute>

 <Attribute

 AttributeId="urn:oasis:names:tc:xacml:2.0:subject:subject-vo"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>VO-EGEE</AttributeValue>

 </Attribute>

 <Attribute

 AttributeId="urn:oasis:names:tc:xacml:2.0:subject:subject-role"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>researcher</AttributeValue>

 </Attribute>

 </Subject>

 <Resource>

 <Attribute

 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

 DataType="http://www.w3.org/2001/XMLSchema#anyURI">

 <AttributeValue>http://nikhef.nl/VO-EGEE/CE01</AttributeValue>

 </Attribute>

 <Attribute

 AttributeId="urn:some:path:peptype"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>GLite-CE</AttributeValue>

 </Attribute>

 </Resource>

 <Action>

 <Attribute

 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

 DataType="http://www.w3.org/2001/XMLSchema#string">

 <AttributeValue>SubmitJob</AttributeValue>

 </Attribute>

 </Action>

 <Environment/>

</Request>

c) Response message that contains obligations to map to a pool account that must be enforced by
PEP or resource itself.
<?xml version="1.0" encoding="UTF-8"?>

<Response xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:context:schema:os access_control-
xacml-2.0-context-schema-os.xsd">

 <Result ResourceId=" http://nikhef.nl/VO-EGEE/CE01">

 <Decision>Permit</Decision>

 <Status>

 <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

 </Status>

 <xacml:Obligations>

 <xacml:Obligation ObligationId="urn:oasis:names:tc:xacml:2.0:scas-
policy:example007:policy:obligation.UID" FulfillOn="Permit">

 <xacml:AttributeAssignment
AttributeId="urn:oasis:names:tc:xacml:1.0:example:attribute:access-subject"
DataType="http://www.w3.org/2001/XMLSchema#string">

 <SubjectAttributeDesignator

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"

 DataType="http://www.w3.org/2001/XMLSchema#string"/>

 </xacml:AttributeAssignment>

<!-- This is actual account attribute/name to which it should be mapped -->

 <xacml:AttributeAssignment
AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:poolaccount"
DataType="http://www.w3.org/2001/XMLSchema#string">

 <PoolAccountDesignator

AttributeId="http://glite.egee.org/JRA1/Authz/XACML/obligation/poolaccount”

 DataType="http://www.w3.org/2001/XMLSchema#string"/>

 <xacml:AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">egee-
pool01</xacml:AttributeValue>

 </xacml:AttributeAssignment>

 </xacml:Obligation>

 <xacml:Obligation ObligationId="urn:oasis:names:tc:xacml:2.0:scas-
policy:example007:policy:obligation.GID" FulfillOn="Permit">

 <xacml:AttributeAssignment
AttributeId="urn:oasis:names:tc:xacml:1.0:policy:subject:subject-group"
DataType="http://www.w3.org/2001/XMLSchema#string">GID-
researchers</xacml:AttributeAssignment>

 </xacml:Obligation>

 </xacml:Obligations>

 </Result>

</Response>

	Aaauthreach Project Technical Report
	Security Languages for Access Control and Authorisation: SAML and XACML Languages Overview
	Copyright note
	1 Introduction
	2 Basic Concepts and Models in Access Control
	2.1 Discretionally Access Control and Mandatory Access Control
	2.2 Role Based Access Control
	2.3 Generic AAA Authorisation Framework

	3 SAML security assertions expression and exchange format
	3.1 SAML Overview
	3.2 SAML Basic Concepts and Components
	3.3 SAML Assertion datamodel and format
	3.3.1 SAML top level elements
	3.3.2 SAML AuthnStatement and AttributeStatement format

	4 XACML policy expression and messaging format
	4.1 XACML overview
	4.1.1 XACML Policy logical model
	4.1.2 XACML Authorisation dataflow
	4.1.3 XACML 2.0 special profiles
	4.1.4 XACML 3.0 Specifications and profiles currently under review

	4.2 XACML2.0 policy datamodel

	5 SAML2.0 profile of XACML: SAML-XACML protocol and Authorisation assertions format
	6 Policy Obligations and Obligations handling
	6.1 Obligations definition and expression in the XACML policy
	6.2 OHRM Obligation Handling Reference Model (OHRM)
	6.2.1 Policy Obligations example

	7 XACML-NRP attributes and policy profile for Network Resource Provisioning
	7.1 Use case and requirements
	7.2 Attributes defintion in XACML-NRP
	7.3 Policy Obligations used in NRP
	7.4 Attributes Expression conventions
	7.5 Policy identification and policy resolution

	8 Libraries and tools supporting SAML and XACML
	8.1 OpenSAML Library and extensions
	8.2 Sun’s XACML Java Library

	9 References

